Introduction

Industrial AI Lab.
Introduction

• 2018 - present: POSTECH
 – Industrial AI Lab.

• 2013 - 2017: UNIST
 – iSystems Design Lab.

• 2010, Ph.D. from the University of Michigan, Ann Arbor
 – S. M. Wu Manufacturing Research Center
 – The Center of Intelligent Maintenance Systems (IMS)

• 2008, M.S. from the University of Michigan, Ann Arbor

• 2005, B.S. of Electrical Engineering from Seoul National University
• 2001, B.S. of Mechanical Engineering from Seoul National University
Data Science
Machine Learning/Deep Learning
Artificial Intelligence

Industrial AI
Machine Learning and Deep Learning

(Big) Data → Information Knowledge

IoT Sensors → First Principles

Engineered Systems
Course Info

• Machine learning
 – Linear algebra
 – Optimization
 – Statistical and probabilistic approaches

• Python in class and assignments
 – Used a lot
 – Provide all necessary .py codes for a class

• Evaluation
 – Two exams (30% + 35%)
 – Many assignments (25%)
 – Class participation (10%)
Lecture Materials

- All lecture materials are already available at
- Lecture video will be posted at YouTube (but in Korean)

MACHINE LEARNING AND DEEP LEARNING

Note: Lecture slides are best viewed in Chrome.

Machine Learning

<table>
<thead>
<tr>
<th>Dates</th>
<th>Topics</th>
<th>with Matlab</th>
<th>with Python</th>
<th>Lecture Slides</th>
<th>pdf</th>
<th>HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/31/2017</td>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/05/2017</td>
<td>Linear Algebra 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear Algebra 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/07/2017</td>
<td>Linear Algebra 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimization 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimization 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graph Regression 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is Machine Learning

• Draw a meaningful conclusion, given a set of data (observation, measurement)

• In 1959, Arthur Samuel defined machine learning as a
 – “Field of study that gives computers the ability to learn without being explicitly programmed”
 – Often hand programming not possible
 – Solution? Get the computer to program itself, by showing it examples of the behavior we want! This is the learning approach of AI
 – Really, we write the structure of the program and the computer tunes many internal parameters
What is Machine Learning?

• Many related terms:
 – Pattern recognition
 – Neural networks → Deep learning
 – Data mining
 – Adaptive control
 – Statistical modeling
 – Data analytics / data science
 – Artificial intelligence
 – Machine learning
Learning: Views from Different Fields

• Engineering
 – Signal processing, system identification, adaptive and optimal control, information theory, robotics, ...

• Computer science
 – Artificial intelligence, computer vision, ...

• Statistics
 – Learning theory, data mining, learning and inference from data, ...

• Cognitive science and psychology
 – Perception, movement control, reinforcement learning, mathematical psychology, ...

• Economics
 – Decision theory, game theory, operational research, ...
Course Roadmap

• Supervised Learning
 – Regression
 • Linear, Nonlinear (kernel), Ridge (L_2 norm regularization), Lasso (L_1 norm regularization)
 – Classification
 • Perceptron, SVM, Logistic regression, Bayesian classifier

• Unsupervised Learning
 – Clustering
 • k-means, Gaussian Mixture Model (GMM)
 – Dimension reduction
 • Principal Component Analysis (PCA)

• Probabilistic Machine Learning
 – Parameter estimation (MLE and MAP)
Course Roadmap

Multivariate Analysis

Optimization

Linear algebra
- vector
- matrix
- linear algebra basics
- low rank approximation
- SVD
- matrix

Statistical approach
- sample mean and variance
- multivariate covariance
- central limit theorem

Probabilistic approach
- random vector
- conditional pmf
- marginal pmf
- covariance and correlation
- affine transformation
- sum of iid
- Bayes rule
- prior prob
- MAP
- maximum-likelihood
- random vector
- classifiation
- perception
- basic
- residual
- norms
- linear function
- nonlinear function
- maximum likelihood
- estimation
- maximum likelihood
- Fisher linear discriminant
- MAP
- Bayesian classification
- linear and quadratic decision boundaries
- logistic regression

Machine learning
- mean and covariance
- ellipsoids
- signal smoothing
- quadratic programming
- least squares
- integer programming
- support vector machine
- sparsity & data compression
- optimization problems
- fitting with different norms
- logistic regression
- support vector machine
- sudoku

Gaussian distribution
- mean and covariance
- marginal
- linear transformation of Gaussian
- conditional pdf of Gaussian
- linear model

CVX tool
- convex optimization
- standard representation

Course Roadmap

11
Required Mathematical Tools

• Linear algebra
 – Vector and Matrix
 – $Ax = b$
 – Projection
 – Eigen analysis

• Optimization
 – Least squares
 – Convex optimization (cvx or cvxpy)

• Statistics
 – Law of large numbers, central limit theorem
 – Correlation
 – Monte Carlo simulation

• Probability
 – Random variable, Gaussian density distribution, conditional probability
 – maximum likelihood (MLE), maximum a posterior (MAP), Bayesian thinking
Deep Learning

• Deep Learning will not be covered in this course

• I plan to open a new graduate course for deep learning next semester (2018 Fall)

• For those who are eager to learn about deep learning,
 – Short course tutorials
 – Installation and TensorFlow
What Will We Cover?
Data Fitting or Approximation (Regression)

- Statistical process for estimating the relationships among variables
Classification

• The problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known.
Dimension Reduction

• Multiple Sensors + Principal Components
• the process of reducing the number of random variables under consideration, and can be divided into feature selection and feature extraction.
Industrial AI lab at POSTECH

• Vision
 – AI for mechanical engineering
 – AI for industrial applications
 – AI for manufacturing

• Some research activities in our lab
Deep Learning of Things (DoT)
Sound Signal Classification

• Inspecting a rotating fan
 – Sampling frequency: 51.2 kHz
 – Duration: 8 sec ~ 9 sec

– NG sound

– OK sound
Real-time Human Detection

99.98%
Visualizing and Understanding Convolutional Networks
Privacy-preserving Human Detection
Artistic Style Transfer
Human Motion Recognition

Label: Crouching
Predict: --
Make it Stable (Robust)

• Control: PID
• From open-loop to closed-loop systems
Reinforcement Learning on Unicopter

Learning from Scratch

AlphaGo Zero

Learned
Make-up Class

• 02/26 (next Monday)
 – TA will discuss
 • python installation, ipython notebook, basic python, CVXPY

• 03/21

• 04/02 (not sure yet)