(Artificial) Neural Networks in TensorFlow

Industrial AI Lab.
Iterations of Perceptron

1. Randomly assign ω

2. One iteration of the PLA (perceptron learning algorithm)

 $$\omega \leftarrow \omega + yx$$

 where (x, y) is a misclassified training point

3. At iteration $t = 1, 2, 3, \cdots$, pick a misclassified point from

 $$(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)$$

4. And run a PLA iteration on it

5. That's it!
Perceptron

input pattern

\[x_1, x_2, x_d \]

\[\omega_1, \omega_2, \omega_d \]

\[y \] actual output

\[Z \] desired output

\[\text{Sign}[] \]

update

3
Artificial Neural Networks: Perceptron

• Perceptron for $h(\theta)$ or $h(\omega)$
 – Neurons compute the weighted sum of their inputs
 – A neuron is activated or fired when the sum a is positive

\[a = \omega_0 + \omega_1 x_1 + \cdots \]
\[o = \sigma(\omega_0 + \omega_1 x_1 + \cdots) \]

• A step function is not differentiable
• One layer is often not enough
XOR Problem

- Minsky-Papert Controversy on XOR
 - not linearly separable
 - Limitation of perceptron

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$x_1 \text{ XOR } x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Artificial Neural Networks: MLP

• Multi-layer Perceptron (MLP) = Artificial Neural Networks (ANN)
 – More linear classifiers (lines)
 – More features
Artificial Neural Networks: Activation Func.

• Differentiable non-linear activation function
Artificial Neural Networks

• In a compact representation
Artificial Neural Networks

• Multi-layer perceptron
 – More non-linearity
 – Features of features
ANN: Transformation

• Affine (or linear) transformation and nonlinear activation layer (notations are mixed: $g = \sigma, \omega = \theta, \omega_0 = b$)

$$o(x) = g(\theta^T x + b)$$

• Nonlinear activation functions ($g = \sigma$)

- Sigmoid
 $$g(x) = \frac{1}{1 + e^{-x}}$$

- tanh
 $$g(x) = \tanh(x)$$

- Rectified Linear Unit
 $$g(x) = \max(0, x)$$
ANN: Multilayers

- A single layer is not enough to be able to represent complex relationship between input and output
 \[o_2 = \sigma_2 \left(\theta_2^T o_1 + b_2 \right) = \sigma_2 \left(\theta_2^T \sigma_1 \left(\theta_1^T x + b_1 \right) + b_2 \right) \]

⇒ perceptron with many layers and units
Example: Linear Classifier

- Perceptron tries to separate the two classes of data by dividing them with a line.
Example: Neural Networks

• The hidden layer learns a representation so that the data is linearly separable
Recall Supervised Learning Setup

TRADITIONAL MACHINE LEARNING

Input → Feature extraction → Classification → Output

DEEP LEARNING

Input → Feature extraction + classification → Output
Training Neural Networks: Optimization

• Learning or estimating weights and biases of multi-layer perceptron from training data

• 3 key components
 – objective function $f(\cdot)$
 – decision variable or unknown θ
 – constraints $g(\cdot)$

• In mathematical expression

$$\min_{\theta} \quad f(\theta)$$
subject to $g_i(\theta) \leq 0, \quad i = 1, \cdots, m$$
Training Neural Networks: Loss Function

• Measures error between target values and predictions

\[
\min_{\theta} \sum_{i=1}^{m} \ell \left(h_{\theta} \left(x^{(i)} \right), y^{(i)} \right)
\]

• Example
 – Squared loss (for regression):
 \[
 \frac{1}{N} \sum_{i=1}^{N} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2
 \]
 – Cross entropy (for classification):
 \[
 - \frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log \left(h_{\theta} \left(x^{(i)} \right) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta} \left(x^{(i)} \right) \right)
 \]
Training Neural Networks: Gradient Descent

• Negative gradients points directly downhill of the cost function
• We can decrease the cost by moving in the direction of the negative gradient (α is a learning rate)

$$\theta := \theta - \alpha \nabla_\theta \left(h_\theta \left(x^{(i)} \right), y^{(i)} \right)$$
Training Neural Networks: Learning

• Forward propagation
 – the initial information propagates up to the hidden units at each layer and finally produces output

• Backpropagation
 – allows the information from the cost to flow backwards through the network in order to compute the gradients
Backpropagation

• Chain Rule
 – Computing the derivative of the composition of functions
 • $f(g(x))' = f'(g(x))g'(x)$
 • $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$
 • $\frac{dz}{dw} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx}\right) \cdot \frac{dx}{dw}$
 • $\frac{dz}{du} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \cdot \frac{dx}{dw}\right) \cdot \frac{dw}{du}$

• Backpropagation
 – Update weights recursively
Backpropagation

• Chain Rule
 – Computing the derivative of the composition of functions
 • \(f \left(g(x) \right)' = f'(g(x))g'(x) \)
 • \(\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} \)
 • \(\frac{dz}{dw} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \right) \cdot \frac{dx}{dw} \)
 • \(\frac{dz}{du} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \cdot \frac{dx}{dw} \right) \cdot \frac{dw}{du} \)

• Backpropagation
 – Update weights recursively
Backpropagation

• Chain Rule
 – Computing the derivative of the composition of functions
 • \(f(g(x))' = f'(g(x))g'(x) \)
 • \(\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} \)
 • \(\frac{dz}{dw} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \right) \cdot \frac{dx}{dw} \)
 • \(\frac{dz}{du} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \cdot \frac{dx}{dw} \right) \cdot \frac{dw}{du} \)

• Backpropagation
 – Update weights recursively
Backpropagation

• Chain Rule
 – Computing the derivative of the composition of functions
 • \(f(g(x))' = f'(g(x))g'(x) \)
 • \(\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} \)
 • \(\frac{dz}{dw} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \right) \cdot \frac{dx}{dw} \)
 • \(\frac{dz}{du} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \cdot \frac{dx}{dw} \right) \cdot \frac{dw}{du} \)

• Backpropagation
 – Update weights recursively
Training Neural Networks

• Optimization procedure

Start at a random point

Repeat
 Determine a descent direction
 Choose a step size
 Update

Until stopping criterion is satisfied

• It is not easy to numerically compute gradients in network in general.
 – The good news: people have already done all the "hard work" of developing numerical solvers (or libraries)
 – There are a wide range of tools: TensorFlow
Summary

• Learning weights and biases from data using gradient descent
• Learning a function approximator from data
 – Generic mathematical representation
Artificial Neural Networks

• Complex/Nonlinear function approximator
 – Linearly connected networks
 – Simple nonlinear neurons

• Hidden layers
 – Autonomous feature learning
Deep Artificial Neural Networks

• Complex/Nonlinear function approximator
 – Linearly connected networks
 – Simple nonlinear neurons
• Hidden layers
 – Autonomous feature learning
Machine Learning vs. Deep Learning

• Machine learning

Input ➔ Hand-engineered features ➔ Classifier ➔ output

• Deep learning

Input ➔ Deep Learning ➔ output

end-to-end training
Training Neural Networks: Deep Learning Libraries

• Caffe
 – Platform: Linux, Mac OS, Windows
 – Written in: C++
 – Interface: Python, MATLAB

• Theano
 – Platform: Cross-platform
 – Written in: Python
 – Interface: Python

• TensorFlow
 – Platform: Linux, Mac OS, Windows
 – Written in: C++, Python
 – Interface: Python, C/C++, Java, Go, R
TensorFlow: Constant

- TensorFlow is an open-source software library for deep learning
 - tf.constant
 - tf.Variable
 - tf.placeholder

```python
import tensorflow as tf

a = tf.constant([1, 2, 3])
b = tf.constant([4, 5, 6])

A = a + b
B = a * b
```

A

<tf.Tensor 'add:0' shape=(3,) dtype=int32>

B

<tf.Tensor 'mul:0' shape=(3,) dtype=int32>
TensorFlow: Session

• To run any of the three defined operations, we need to create a session for that graph. The session will also allocate memory to store the current value of the variable.
`sess = tf.Session()
sess.run(A)`

`array([[5, 7, 9]])`

`sess.run(B)`

`array([[4, 10, 18]])`
TensorFlow: Initialization

- `tf.Variable` is regarded as the decision variable in optimization.
- We should initialize variables to use `tf.Variable`.

```python
w = tf.Variable([1, 1])

init = tf.global_variables_initializer()
sess.run(init)

sess.run(w)
array([[1, 1]])
```
TensorFlow: Placeholder

- The value of `tf.placeholder` must be fed using the `feed_dict` optional argument to `Session.run()`

```python
x = tf.placeholder(tf.float32, [2, 2])
sess.run(x, feed_dict={x : [[1,2],[3,4]]})
array([[1., 2.],
       [3., 4.]], dtype=float32)
```
ANN with MNIST

• MNIST database
 – Mixed National Institute of Standards and Technology database
 – Handwritten digit database
 – 28×28 gray scaled image
 – Flattened matrix into a vector of 28×28=784
ANN with TensorFlow

• Feed a gray image to ANN
Our Network Model

Input image: 28x28 pixels

Input layer: 784 neurons, one per pixel

Hidden layer: 100 neurons

Output layer: 10 neurons

Output: predicted digit value
Iterative Optimization

\[\min_{\theta} f(\theta) \]
subject to \(g_i(\theta) \leq 0 \)

\[\theta := \theta - \alpha \nabla_\theta \left(h_\theta \left(x^{(i)} \right), y^{(i)} \right) \]
Mini-batch Gradient Descent

1. Linear regression cost function
 \[J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^i - y^i)^2 \]

 \[\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^i - y^i) \cdot x_j^i \]

2. Vanilla (Batch) G.D.

 \[\theta_j := \theta_j - \alpha \cdot \frac{\partial}{\partial \theta_j} J(\theta) \]

 \[= \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^i - y^i) \cdot x_j^i \]

3. Stochastic G.D.

 \[\text{for } i \text{ in range}(m): \]
 \[\theta_j := \theta_j - \alpha \cdot \left((\hat{y}^i - y^i) \cdot x_j^i \right) \]

 \[\text{only one example} \]

4. Mini-batch gradient descent uses \(n \) data batch at each iteration
ANN with TensorFlow

• Import Library

```python
# Import Library
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
```

• Load MNIST Data
 – Download MNIST data from TensorFlow tutorial example

```python
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
```

Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
One Hot Encoding

```python
train_x, train_y = mnist.train.next_batch(10)
img = train_x[3,:].reshape(28,28)

plt.figure(figsize=(5,3))
plt.imshow(img, 'gray')
plt.title("Label : {}".format(np.argmax(train_y[3])))
plt.xticks([])
plt.yticks([])
plt.show()
```

- One hot encoding

```python
print ('Train labels : {}' .format(train_y[3, :]))
Train labels : [0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
```
Build a Model

• First, the layer performs several matrix multiplication to produce a set of linear activations

\[y_j = \left(\sum_i \omega_{ij} x_i \right) + b_j \]

\[y = \omega^T x + b \]

```python
# hidden1 = tf.matmul(x, weights['hidden1']) + biases['hidden1']
hidden1 = tf.add(tf.matmul(x, weights['hidden1']), biases['hidden1'])
```
Build a Model

- Second, each linear activation is running through a nonlinear activation function

```
hidden1 = tf.nn.relu(hidden1)
```
Build a Model

- Third, predict values with an affine transformation

```python
# output = tf.matmul(hidden1, weights['output']) + biases['output']
output = tf.add(tf.matmul(hidden1, weights['output']), biases['output'])
```
ANN's Shape

- Input size
- Hidden layer size
- The number of classes

Input image: 28x28 pixels
Input layer: 784 neurons, one per pixel
Hidden layer: 100 neurons
Output layer: 10 neurons

Output: predicted digit value

n_input = 28*28
n_hidden1 = 100
n_output = 10
Weights and Biases

- Define parameters based on predefined layer size
- Initialize with normal distribution with $\mu = 0$ and $\sigma = 0.1$

```python
weights = {
    'hidden1': tf.Variable(tf.random_normal([n_input, n_hidden1], stddev = 0.1)),
    'output': tf.Variable(tf.random_normal([n_hidden1, n_output], stddev = 0.1)),
}
biases = {
    'hidden1': tf.Variable(tf.random_normal([n_hidden1], stddev = 0.1)),
    'output': tf.Variable(tf.random_normal([n_output], stddev = 0.1)),
}
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_output])
```
Define Network

def build_model(x, weights, biases):
 # first hidden layer
 hidden1 = tf.add(tf.matmul(x, weights['hidden1']), biases['hidden1'])
 # non linear activate function
 hidden1 = tf.nn.relu(hidden1)

 # Output layer with linear activation
 output = tf.add(tf.matmul(hidden1, weights['output']), biases['output'])
 return output
Cost, Initializer and Optimizer

• Loss: cross entropy

\[-\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log(h_{\theta} \left(x^{(i)}\right)) + (1 - y^{(i)}) \log(1 - h_{\theta} \left(x^{(i)}\right))\]

• Initializer
 – Initialize all the empty variables

• Optimizer
 – AdamOptimizer: the most popular optimizer

```python
# Define Cost
pred = build_model(x, weights, biases)
loss = tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)
loss = tf.reduce_mean(loss)

# optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
LR = 0.0001
optm = tf.train.AdamOptimizer(LR).minimize(loss)

init = tf.global_variables_initializer()
```
Summary of Model

Diagram:
- Input X
- Process: Nets
- Result
- Cost
- Optimizer
- Output Y
- Weights
- Update
Iteration Configuration

• Define parameters for training ANN
 – n_batch: batch size for stochastic gradient descent
 – n_iter: the number of learning steps
 – n_prt: check loss for every n_prt iteration

```
n_batch = 50  # Batch Size
n_iter = 2500 # Learning Iteration
n_prt = 250   # Print Cycle
```
Optimization

```python
# Run initialize
# config = tf.ConfigProto(allow_soft_placement=True)  # GPU Allocating policy
# sess = tf.Session(config=config)
sess = tf.Session()
sess.run(init)

# Training cycle
for epoch in range(n_iter):
    train_x, train_y = mnist.train.next_batch(n_batch)
sess.run(optm, feed_dict={x: train_x, y: train_y})

    if epoch % n_prt == 0:
        c = sess.run(loss, feed_dict={x : train_x, y : train_y})
        print("Iter : {}".format(epoch))
        print("Cost : {}".format(c))
```

Iter : 0
Cost : 2.8692855834960938
Iter : 250
Cost : 1.202142357826233
Iter : 500
Cost : 0.8901556134223938
Iter : 750
Cost : 0.5407989621162415
Iter : 1000
Cost : 0.3589915931224823
Iter : 1250
Cost : 0.28060182929039
test_x, test_y = mnist.test.next_batch(100)

my_pred = sess.run(pred, feed_dict={x : test_x})
my_pred = np.argmax(my_pred, axis=1)

labels = np.argmax(test_y, axis=1)

accr = np.mean(np.equal(my_pred, labels))
print("Accuracy : {}\%".format(accr*100))

Accuracy : 93.0\%
test_x, test_y = mnist.test.next_batch(1)
logits = sess.run(tf.nn.softmax(pred), feed_dict={x : test_x})
predict = np.argmax(logits)
plt.imshow(test_x.reshape(28,28), 'gray')
plt.xticks([])
plt.yticks([])
plt.show()

print('Prediction : {}'.format(predict))
np.set_printoptions(precision=2, suppress=True)
print('Probability : {}'.format(logits.ravel()))

Prediction : 2
Probability : [0. 0. 0.93 0.01 0. 0. 0.06 0. 0. 0.]