Kinematics


By Prof. Seungchul Lee
http://iai.postech.ac.kr/
Industrial AI Lab at POSTECH

Table of Contents

1. Two Trains and FlyĀ¶

  • Two trains are on the same track a distance 100 mi apart heading towards one another, each at a speed of 10 mi/h.
  • A fly starting out at the front of one train, flies towards the other at a speed of 20 mi/h.
  • Upon reaching the other train, the fly turns around and continues towards the first train.
  • How many kilometers does the fly travel before getting squashed in the collision of the two trains?



2. KinematicsĀ¶

  • way to describe the motion
    • translation
    • rotation (will be covered later)

3. Translation motionĀ¶

Position

  • The motion of an object is described by the position, $x(t)$, as a function of time $t$, measured in a given reference system.

Velocity

  • Displacement

    The displacement $\Delta x(t_1)$ over the time interval from $t=t_1$ to $t=t_1+\Delta t$ is defined as:

$$ \Delta x(t_1) = x(t_1+\Delta t) - x(t_1)$$
  • Average Velocity

    The average velocity from $\Delta x(t_1)$ over the time interval from $t=t_1$ to $t=t_1+\Delta t$ is defined as:

$$ \bar v(t_1) = \frac{x(t_1+\Delta t) - x(t_1)}{\Delta t} = \frac{\Delta x(t_1)}{\Delta t}$$
  • Instantaneous Velocity

    The instantaneous velocity is defined as the time derivative of the position:

$$ v(t) = \lim_{\Delta t \to 0}\frac{x(t+\Delta t) - x(t)}{\Delta t} = \frac{d x(t)}{d t} = \dot x (t)$$

Acceleration

  • average acceleration

    The average acceleration over a time interval $\Delta t$ from $t$ to $t + \Delta t$ is:

$$ \bar a(t) = \frac{v(t+\Delta t) - v(t)}{\Delta t} = \frac{\Delta v(t)}{\Delta t}$$
  • instantaneous acceleration

    The instantaneous acceleration is defined as:

$$ a(t) = \lim_{\Delta t \to 0}\frac{v(t+\Delta t) - v(t)}{\Delta t} = \frac{d v(t)}{d t} = \frac{d}{dt}\frac{dx}{dt} = \frac{d^2x}{dt^2} = \dot v (t) = \ddot x(t)$$

3.1. Constant accelerationĀ¶


$$ \begin{align*} & a = \text{const.} \\ & v = v_0 + at \\ & x = x_0 + v_0 t + \frac{1}{2} a t^2 \end{align*}$$

  • zero acceleration
$$ \begin{align*} & a = 0 \\ & v = v_0 \\ & x = x_0 + v_0 t \end{align*}$$
  • free fall
$$ \begin{align*} & a = -g \quad \left(+ \uparrow \right) \\ & v = v_0 -gt \\ & x = x_0 + v_0 t - \frac{1}{2}gt^2 \end{align*}$$
  • for the motion of a falling tennis ball when there is no air resistance
InĀ [12]:
% 1D

g = -9.8;
y0 = 1.6;
v0 = 3;
t = 0:0.05:1;
y = y0 + v0*t + 1/2*g*t.^2;

plot(t,y)
xlabel('time in sec')
ylabel('y')
Out[12]:

3.2. Kinematics in 2-DĀ¶


$$ \begin{align*} \vec{a} & = \text{const.} = a_x \hat{x} + a_y \hat{y} \\ \\ \vec{v} & = \left( v_{0x} + a_x t \right) \hat{x} + \left( v_{0y} + a_y t \right) \hat{y} \\ \\ \vec{r} & = \left( x_{0x} + v_{0x} t + \frac{1}{2} a_x t^2 \right) \hat{x} + \left( y_{0x} + v_{0y} t + \frac{1}{2} a_y t^2 \right) \hat{y} \\ \\ & \implies \; \text{Two independent 1-D motions} \end{align*}$$

InĀ [13]:
% 2D

g = -9.8;

x0 = 0;
y0 = 1.6;

v0x = 3;
v0y = 3;

t = 0:0.05:1;
x = x0 + v0x*t;
y = y0 + v0y*t + 1/2*g*t.^2;

plot(x,y), axis equal
xlabel('x')
ylabel('y')
Out[13]:

4. Data fitting from experimental measurementsĀ¶

4.1. Zero accelerationĀ¶

  • experiment video
  • regression (data fitting or approximation)
InĀ [14]:
%%html
<iframe width="560" height="315" 
src="https://www.youtube.com/embed/IS3i_E9Lzw4?list=PLBD_gON7g_m33nR6eOy1GmU3b83rL1oho" frameborder="0" allowfullscreen>
</iframe>
InĀ [15]:
t = [0 0.033 0.067 0.1 0.133 0.167 0.2 0.233 0.267 0.3 0.334 0.367 0.4 0.434 0.467]';
x = [0.001 -0.028 -0.059 -0.087 -0.118 -0.149 -0.175 -0.21 -0.237 -0.262 -0.285 -0.312 -0.344 -0.378 -0.405]';

plot(t,x,'.')
xlabel('t')
ylabel('measured x')

T = [ones(size(t)) t];
b = regress(x,T)
Out[15]:
b =

   -0.0019
   -0.8621
InĀ [16]:
T = [ones(size(t)) t];
b = regress(x,T);

tp = 0:0.01:0.5;
plot(t,x,'o'), hold on
plot(tp,b(1)+b(2)*tp), hold off

xlabel('t')
ylabel('height')
Out[16]:

4.2. Constant accelerationĀ¶

  • experiment video

  • regression (data fitting or approximation)

InĀ [1]:
%%html
<iframe width="560" height="315" 
src="https://www.youtube.com/embed/Mc6nAtbSMn0?list=PLBD_gON7g_m33nR6eOy1GmU3b83rL1oho" frameborder="0" allowfullscreen>
</iframe>

Experiment result


InĀ [18]:
t = 0:0.1:0.5;
t = t(:);
y = [1.6 1.55 1.4 1.16 0.82 0.39]';

plot(t,y,'o')

xlabel('t')
ylabel('height')
Out[18]:
InĀ [19]:
t = 0:0.1:0.5;
t = t(:);
y = [1.6 1.55 1.4 1.16 0.82 0.39]';

T = [ones(size(t)) t.^2];
b = regress(y,T)

plot(t,y,'o'), hold on

tp = 0:0.01:0.5;
plot(tp,b(1)+b(2)*tp.^2), hold off

xlabel('t')
ylabel('height')
Out[19]:
b =

    1.5968
   -4.8382

We can learn about the magnitude of the gravity

$$ 4.8383 \approx \frac{9.8}{2}$$

5. Data analysis from accelerationĀ¶

  • Usually, we do not know the position as a function of time. Instead, we want to determine the motion based on measurements of the acceleration (or velocity)
  • Integral
$$ \begin{align*} v(t) &= v(t_i) + \int_{t_i}^{t} a(s)\; ds\\ x(t) &= x(t_i) + \int_{t_i}^{t} v(s)\; ds \end{align*} $$

discrete integration (Euler's method)


$$ \begin{align*} \upsilon(t_0) &= \upsilon_0\\ x(t_0) &= x_0\\ \\ \upsilon(t_1) &= \upsilon(t_0) + a(t_0)\Delta t\\ x(t_1) &= x(t_0) + \upsilon(t_0)\Delta t\\ \\ & \vdots\\ \\ \upsilon(t_i + \Delta t) &= \upsilon(t_i) + a(t_i)\Delta t\\ x(t_i + \Delta t) &= x(t_i) + \upsilon(t_i)\Delta t \end{align*} $$

InĀ [20]:
path = [pwd, '\files'];
temp = load([path,'\therocket.dat']);

t = temp(:,1);
a = temp(:,2);

plot(t,a)
xlabel('time in sec')
ylabel('a [m/s^2]')
Out[20]:
InĀ [21]:
%plot -s 600,800

t = temp(:,1);
a = temp(:,2);

dt = t(2) - t(1);

n = length(t);
v = zeros(n,1);
x = zeros(n,1);

v(1) = 0;
x(1) = 0;

for i = 1:n-1
    v(i+1) = v(i) + a(i)*dt;
    x(i+1) = x(i) + v(i)*dt;
end

subplot(3,1,1), plot(t,x), ylabel('x [m]')
subplot(3,1,2), plot(t,v), ylabel('v [m/s]')
subplot(3,1,3), plot(t,a), ylabel('a [m/s^2]'), xlabel('t [s]')
Out[21]:

6. Data analysis from positionĀ¶

Motion of a falling tennis ball

  • motion (position, or displacement) $\rightarrow$ velocity and acceleration

  • derivative

$$ \begin{align*} v(t_i) &\approx \frac{r(t_{i}+\Delta t)-r(t_i)}{\Delta t}\\ a(t_i) &\approx \frac{v(t_{i}+\Delta t)-v(t_i)}{\Delta t} \end{align*} $$
InĀ [2]:
%%html
<iframe 
width="560" height="315" src="https://www.youtube.com/embed/HBsRfaix2SA" frameborder="0" allowfullscreen>
</iframe>
InĀ [23]:
%plot -s 500,400

path = [pwd, '\files'];
temp = load([path,'\fallingtennisball02.dat']);

t = temp(:,1);
y = temp(:,2);
plot(t,y)
xlabel('t [s]');
ylabel('y [m]');
Out[23]:
$$ \begin{align*} v(t_i) &\approx \frac{r(t_{i}+\Delta t)-r(t_i)}{\Delta t}\\ a(t_i) &\approx \frac{v(t_{i}+\Delta t)-v(t_i)}{\Delta t} \end{align*} $$
InĀ [24]:
%plot -s 600,800
n = length(t);
dt = t(2) - t(1);

v = zeros(n-1,1);
for i = 1:n-1
    v(i) = (y(i+1) - y(i))/dt;
end

a = zeros(n-2,1);
for i = 1:n-2
    a(i) = (v(i+1) - v(i))/dt;
end

subplot(3,1,1), plot(t,y), ylabel('x [m]')
subplot(3,1,2), plot(t(2:n),v), ylabel('v [m/s]')
subplot(3,1,3), plot(t(3:n),a), ylabel('a [m/s^2]'), xlabel('t [s]')
Out[24]:
InĀ [25]:
%plot -s 500,400

imax = max(find(t<=0.5));

plot(t(3:imax),a(3:imax));
xlabel('t [s]')
ylabel('a [m/sĖ†2]')
Out[25]:

The acceleration is clearly not a constant in this case. It starts at $āˆ’9.8m/s^2$, but its magnitude becomes smaller with time. (This is due to air resistance).

7. VectorĀ¶

Vector in CoordinateĀ¶


$$ \vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z} = \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} \quad \text{coordinate with} \; \{\hat{x}, \hat{y}, \hat{z} \}$$


for example,

$$ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
  • each component can be treated as a scalar

Decomposition in 2-DĀ¶



Decompose complicated motion (problem) to simple motions (subproblems)

ProjectileĀ¶



$$ \begin{array}{c} \text{Given} \; \upsilon \; \text{and} \; \theta \\ H = ? \\ S = ? \end{array} \quad \quad \quad \begin{array}{c} \text{Given} \; \upsilon \\ \max\limits_{\theta}{S} \end{array}$$
InĀ [3]:
%%html
<iframe 
width="420" height="315" src="https://www.youtube.com/embed/JCampZIwL5w" frameborder="0" allowfullscreen>
</iframe>

Different FramesĀ¶



$$ \begin{align*} & \text{Mass} \; M \; \text{moves with velocity of} \; v_x \\ & \text{Mass} \; M \; \text{shots ball} \; m \; \text{up with velocity of} \; v_y \end{align*}$$

For frame 1


For frame 2


InĀ [11]:
%%html
<iframe 
width="420" height="315" src="https://www.youtube.com/embed/WxqrOYzTRmw" frameborder="0" allowfullscreen>
</iframe>
InĀ [12]:
%%html
<iframe 
width="420" height="315" src="https://www.youtube.com/embed/bZXlcDssxhY" frameborder="0" allowfullscreen>
</iframe>

8. Uniform Circular MotionĀ¶

  • motion of an object traveling at a constant speed on a circular path

8.1. VelocityĀ¶

$$\text{change of vector}: \underbrace{\text{change of magnitude}}_{\text{translation}} + \underbrace{\text{change of direction}}_{\text{circular motion}}$$
$$\begin{align*}\\ \vec{v}_{avg} & = \frac{\vec r \left(t + \Delta t\right) - \vec r \left( t \right)}{\Delta t}\\ \vec v & = \lim\limits_{\Delta \rightarrow 0}\frac{\vec r \left( t + \Delta t \right) - \vec r \left( t \right)}{\Delta t} \end{align*}$$
$$\vec{\upsilon} \text{ is tangential to the circle}$$
InĀ [6]:
%%html
<iframe 
width="420" height="315" src="https://www.youtube.com/embed/lNe59oGVLuE" frameborder="0" allowfullscreen>
</iframe>
InĀ [7]:
%%html
<iframe 
width="560" height="315" src="https://www.youtube.com/embed/QQKQzPJj5eg?list=PLBD_gON7g_m33nR6eOy1GmU3b83rL1oho" 
frameborder="0" allowfullscreen>
</iframe>

8.2. AccelerationĀ¶

$$\begin{align*}\\ \vec{a}_{avg} & = \frac{\vec v \left(t + \Delta t\right) - \vec v \left( t \right)}{\Delta t}\\ \vec a & = \lim\limits_{\Delta \rightarrow 0}\frac{\vec v \left( t + \Delta t \right) - \vec v \left( t \right)}{\Delta t} \end{align*}$$
InĀ [31]:
%%html
<iframe 
width="420" height="315" src="https://www.youtube.com/embed/kIsQlbNwtPU" frameborder="0" allowfullscreen>
</iframe>

8.3. Angular VelocityĀ¶

$$\begin{array}\\ & \theta &\triangleq \frac{l}{r} \text{ ( radian ) }\\ & l &= r \theta \\ & \dot l &= \dot r \theta + r \dot \theta\\ \Rightarrow & v &= r \dot \theta = r\omega \end{array}$$

Angular Velocity VectorĀ¶

$$\begin{array}\\ \text{line velocity } &:\vec v, \quad \text{ we know }v = r\omega\text{ (only magnitude)}\\ \text{angular velocity} &: \vec {\omega}\\ \\ \lvert \vec{\omega} \rvert = \omega\\ \vec{\omega}\text{ direction?}\\ \end{array}$$

Cross ProductĀ¶

$$\vec A \times \vec B$$



$$\lvert \vec A \times \vec B \rvert = \lvert \vec A \rvert \lvert \vec B \rvert \sin \theta$$

Why do we need to know the cross product?

$$ \lvert \vec{\omega} \rvert = \omega$$



$$\vec{\omega} \text{ dirction ?}$$

Angular Velocity and Angular Acceleration VectorĀ¶




How to represent $\vec{v}$ and $\vec{a}$ in a cross product form

$$ \large \begin{array}\\ \vec{v} &= \vec{\omega} \times \vec r\\ \vec{a} &= \vec{\omega} \times \vec v\\ &= \vec{\omega} \times \left( \vec{\omega} \times \vec r\right)\\ \\ \lvert\vec{a}\rvert & = r\omega^2 = \frac{v^2}{r} \end{array} $$
InĀ [2]:
w = [0 0 1]';
r = [1 0 0]';
v = cross(w,r)
a = cross(w,v)
Out[2]:
v =

     0
     1
     0


a =

    -1
     0
     0
InĀ [4]:
theta = 45*pi/180;

w = [0 0 1]';
r = [cos(theta) sin(theta) 0]';
v = cross(w,r)
a = cross(w,v)
Out[4]:
v =

   -0.7071
    0.7071
         0


a =

   -0.7071
   -0.7071
         0

Circular Motion or Spiral Motion?Ā¶


$$\lvert\vec{a}\rvert > \frac{v^2}{r}\; ?$$



8.4. Free Fall or Circular Motion?Ā¶

  • what about satellites ?

9. General motion = translation motion + circular motionĀ¶

  • particle moving along the curved path
  • projectile

10. Kinematics of Particles (or Rigid Body)Ā¶

  • So far, we have been considering the kinematics of a single particle
  • what if a rigid body whose mass is distributed
  • The Center of Mass

    • the point where all of the mass of the object is concentrated.
  • treat it as a particle in the center of mass
    • the center of mass moves as if it were a point whose mass is equal to the total mass of the system
  • often enable us to simplify physic problems
InĀ [37]:
%%html
<iframe 
width="560" height="315" src="https://www.youtube.com/embed/Qa_GyOv-JRE" frameborder="0" allowfullscreen>
</iframe>

Questions:

InĀ [1]:
%%javascript
$.getScript('https://kmahelona.github.io/ipython_notebook_goodies/ipython_notebook_toc.js')