Dimension Reduction
Table of Contents
A population includes all the elements from a set of data
A parameter is a quantity computed from a population
- mean, $\mu$
- variance, $\sigma^2$
A sample is a subset of the population.
- one or more observations
A statistic is a quantity computed from a sample
- sample mean, $\bar{x}$
- sample variance, $𝑠^2$
- sample correlation, $𝑆_{𝑥𝑦}$
1.1.1. How to Generate Random Numbers (Samples or data)¶
- Data sampled from population/process/generative model
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
## random number generation (1D)
m = 1000;
# uniform distribution U(0,1)
x1 = np.random.rand(m,1);
# uniform distribution U(a,b)
a = 1;
b = 5;
x2 = a + (b-a)*np.random.rand(m,1);
# standard normal (Gaussian) distribution N(0,1^2)
# x3 = np.random.normal(0, 1, m)
x3 = np.random.randn(m,1);
# normal distribution N(5,2^2)
x4 = 5 + 2*np.random.randn(m,1);
# random integers
x5 = np.random.randint(1, 6, size = (1,m));
1.1.2. Histogram : graphical representation of data distribution¶
$ \Rightarrow$ rough sense of density of data
1.2. Inference¶
- True population or process is modeled probabilistically.
- Sampling supplies us with realizations from probability model.
- Compute something, but recognize that we could have just as easily gotten a different set of realizations.
- We want to infer the characteristics of the true probability model from our one sample.
1.3. Law of Large Numbers¶
- Sample mean converges to the population mean as sample size gets large
$$ \bar{x} \rightarrow \mu_x \qquad \text{as} \qquad m \rightarrow \infty$$
- True for any probability density functions
- sample mean and sample variance
$$ \begin{align} \bar{x} &=\frac{x_1+x_2+...+x_m}{m}\\ s^2 &=\frac{\sum_{i=1}^{m}(x_i-\bar{x})^2}{m-1} \end{align} $$
- suppose $x \sim U[0,1]$
# statistics
# numerically understand statisticcs
m = 100
x = np.random.rand(m,1)
#xbar = 1/m*np.sum(x, axis = 0)
#np.mean(x, axis = 0)
xbar = 1/m*np.sum(x)
np.mean(x)
varbar = (1/(m - 1))*np.sum((x - xbar)**2)
np.var(x)
print(xbar)
print(np.mean(x))
print(varbar)
print(np.var(x))
# various sample size m
m = np.arange(10, 2000, 20)
means = []
for i in m:
x = np.random.normal(10, 30, i)
means.append(np.mean(x))
plt.figure(figsize = (6, 4))
plt.plot(m, means, 'bo', markersize = 4)
plt.axhline(10, c = 'k', linestyle='dashed')
plt.xlabel('# of smaples (= sample size)', fontsize = 15)
plt.ylabel('sample mean', fontsize = 15)
plt.ylim([0, 20])
plt.show()
1.4. Central Limit Theorem¶
- Sample mean (not samples) will be approximately normal-distributed as a sample size $m \rightarrow \infty$
$$ \bar{x} =\frac{x_1+x_2+...+x_m}{m}$$
- More samples provide more confidence (or less uncertainty)
- Note: true regardless of any distribution of population
$$ \bar{x} \rightarrow N\left(\mu_x,\left(\frac{\sigma}{\sqrt{m}}\right)^2 \right) $$
N = 100
m = np.array([10, 40, 160]) # sample of size m
S1 = [] # sample mean (or sample average)
S2 = []
S3 = []
for i in range(N):
S1.append(np.mean(np.random.rand(m[0], 1)))
S2.append(np.mean(np.random.rand(m[1], 1)))
S3.append(np.mean(np.random.rand(m[2], 1)))
plt.figure(figsize = (6, 4))
plt.subplot(1,3,1), plt.hist(S1, 21), plt.xlim([0, 1]), plt.title('m = '+ str(m[0])), plt.yticks([])
plt.subplot(1,3,2), plt.hist(S2, 21), plt.xlim([0, 1]), plt.title('m = '+ str(m[1])), plt.yticks([])
plt.subplot(1,3,3), plt.hist(S3, 21), plt.xlim([0, 1]), plt.title('m = '+ str(m[2])), plt.yticks([])
plt.show()
1.5. Multivariate Statistics¶
$$ x^{(i)} = \begin{bmatrix}x_1^{(i)} \\ x_2^{(i)}\\ \vdots \end{bmatrix}, \quad X = \begin{bmatrix} -& (x^{(i)})^T & -\\ - & (x^{(i)})^T & -\\ & \vdots & \\ - & (x^{(m)})^T & -\end{bmatrix}$$
- $m$ observations $\left(x^{(i)}, x^{(2)}, \cdots , x^{(m)}\right)$
$$ \begin{align*} \text{sample mean} \; \bar x &= \frac{x^{(1)} + x^{(2)} + \cdots + x^{(m)}}{m} = \frac{1}{m} \sum\limits_{i=1}^{m}x^{(i)} \\ \text{sample variance} \; S^2 &= \frac{1}{m-1} \sum\limits_{i=1}^{m}(x^{(i)} - \bar x)^2 \\ (\text{Note: } &\text{population variance} \; \sigma^2 = \frac{1}{N}\sum\limits_{i=1}^{N}(x^{(i)} - \mu)^2 \end{align*} $$
1.5.1. Correlation of Two Random Variables¶
$$ \begin{align*} \text{Sample Variance} : S_x &= \frac{1}{m-1} \sum\limits_{i=1}^{m}\left(x^{(i)}-\bar x\right)^2 \\ \text{Sample Covariance} : S_{xy} &= \frac{1}{m-1} \sum\limits_{i=1}^{m}\left(x^{(i)}-\bar x\right)\left(y^{(i)}-\bar y \right)\\ \text{Sample Covariance matrix} : S &= \begin{bmatrix} S_x & S_{xy} \\ S_{yx} & S_y \end{bmatrix}\\ \text{sample correlation coefficient} : r &= \frac{S_{xy}}{ \sqrt {S_{xx}\cdot S_{yy}} } \end{align*}$$
- Strength of linear relationship between two variables, $x$ and $y$
- Assume
$$x_1 \leq x_2 \leq \cdots \leq x_n$$
$$y_1 \leq y_2 \leq \cdots \leq y_n$$