Dynamic Systems:
Complex Number and Harmonic Motion
Table of Contents
$$z_2 = a_2 + b_2i, \quad \vec{z}_2 = \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} $$
$$\text{cos }\omega t = \large{e^{i\omega t } + e^{-i\omega t} \over 2}$$
Example
$\quad \;\implies$ will re-visit when PID controller.
$${d \over dt} \left(e^{j\omega t} \right) = j \omega e^{j\omega t} = \omega e^{j {\pi \over 2}}e^{j\omega t} = \omega e^{j \left(\omega t + {\pi \over 2} \right)}$$
$$\int e^{j\omega t} = {1\over j\omega}e^{j\omega t} = {1 \over \omega} (-j) e^{j\omega t} = {1 \over \omega} e^{j \left(\omega t - {\pi \over 2} \right)}$$
$$\begin{align*}
\upsilon(t) &= \frac{dp(t)}{dt} = r\cdot i \omega e^{i\omega t}= i\, r \omega \, e^{i\omega t} \\ \\
\lvert \upsilon(t) \rvert &= r\omega\\
\angle \upsilon(t) &= \omega t + \frac{\pi}{2}
\end{align*}$$
$$\begin{align*}
a(t) &= \frac{d \upsilon(t)}{dt} = r\omega i \cdot i \omega e^{i\omega t}= - r \omega^2 e ^{i\omega t} \\ \\
\lvert a(t) \rvert &= r\omega^2\\
\angle a(t) &= \omega t + \pi
\end{align*}$$
$$
\begin{align*}
-kx &= m\ddot{x} \\
m\ddot{x} + kx &= 0 \\
\ddot{x} + {k \over m} x &= 0 \\ \\
\ddot{x} + \omega_n^2x &= 0,\; \omega_n=\sqrt{k \over m}
\end{align*}
$$
$\quad \Rightarrow$ No input force
$\quad \Rightarrow$ Two initial conditions determine the future motion.
$\qquad \begin{cases} x(0) = x_0\\ \dot{x}(0) = v_0 \end{cases}$
$$x(t) = R\cos(\omega_n t+\phi)$$
$\;\; \quad \quad$ Unknowns $R$ and $\phi$ are determined by $x_0, v_0$
How to obtain $A, \phi$ from $x_0, v_0$
$$ \begin{array}{} x(t) = R\cos(\omega t + \phi) & x(0)=R\cos\phi = x_0 \\\\ \dot{x}(t) = -R\omega\sin(\omega t + \phi) &\dot{x}(0) = -R\omega\sin(\phi) = -v_0 \end{array} $$
$$
\begin{align*}
-T + mg\cos \theta &= -ml \omega^2 \\
-mg\sin \theta &= ma = ml \ddot{\theta}
\end{align*}
$$
$\quad \;$ nonlinear system approximation possible?
$$
\begin{array}{}
\ddot{\theta} + {g \over l}\text{sin}\theta = 0 & \Rightarrow & \ddot{\theta} + {g \over l}\theta = 0
\end{array}
$$
%%html
<center><iframe src="https://www.youtube.com/embed/YlSC2DfphaY?rel=0"
width="420" height="315" frameborder="0" allowfullscreen></iframe></center>
Note
$$
z(t) = e^{j \omega t} = \cos \omega t + j \sin\omega t$$
t = 0:0.01:1;
f = 1;
w = 2*pi*f;
z = exp(1j*w*t);
plot(real(z),imag(z),'.'), axis equal, ylim([-1.1 1.1])
subplot(2,1,1), plot(t,real(z),'.')
subplot(2,1,2), plot(t,imag(z),'.')
%%html
<center><iframe src="https://www.youtube.com/embed/vDulP6vTa9g?rel=0"
width="560" height="315" frameborder="0" allowfullscreen></iframe></center>
r = 0.3;
f = 1;
w = 2*pi*f;
t = 0:0.01:10;
z = exp(-1*r*t).*exp(1j*w*t);
plot(real(z),imag(z)), axis equal, ylim([-1.1,1.1])
plot(t,real(z),t,exp(-1*r*t),'r--',t,-exp(-1*r*t),'r--')
$$ \left\{ (\gamma ^2 - \omega^2 + j2\gamma \omega) e^{-(\gamma +j\omega)t} \right\} + 2\gamma \left\{ \left( -(\gamma + j\omega) e^{-(\gamma +j\omega)t}\right) \right\} + \left(\gamma^2 + \omega^2 \right) \left\{ e^{-(\gamma +j\omega)t} \right\} \\
= a(t) + 2\gamma \upsilon(t) + \left(\gamma^2 + \omega^2 \right) z(t) = \frac{d^2z(t)}{dt^2} + 2\gamma \frac{dz(t)}{dt} + (\gamma^2 + \omega^2) z(t) = 0$$
%plot -s 800,250
f = 1;
wn = 2*pi*f;
zeta = [0.1 0.2 0.5 0.8];
t = 0:0.01:10;
for i = 1:4
r = zeta(i)*wn;
w = wn*sqrt(1-zeta(i)^2);
z = exp(-1*r*t).*exp(1j*w*t);
subplot(1,4,i), plot(real(z),imag(z)), grid on
axis equal, axis([-1.1,1.1 -1.1 1.1])
title(['\zeta = ',num2str(zeta(i))],'fontsize',8)
end
for i = 1:4
r = zeta(i)*wn;
w = wn*sqrt(1-zeta(i)^2);
z = exp(-1*r*t).*exp(1j*w*t);
plot(t,real(z)), hold on
end
hold off
legend(['\zeta = ',num2str(zeta(1))],['\zeta = ',num2str(zeta(2))],...
['\zeta = ',num2str(zeta(3))],['\zeta = ',num2str(zeta(4))])
Example: Door lock
%%html
<center><iframe src="https://www.youtube.com/embed/C2P_5Q8XROk?rel=0"
width="560" height="315" frameborder="0" allowfullscreen></iframe></center>
Example: Torsional Pendulum
%%html
<center><iframe src="https://www.youtube.com/embed/pnhE_-fW0pE?rel=0"
width="420" height="315" frameborder="0" allowfullscreen></iframe></center>
Example: unicopter
%%html
<center><iframe src="https://www.youtube.com/embed/N8UX_TDMn-Y?rel=0"
width="560" height="315" frameborder="0" allowfullscreen></iframe></center>
%%javascript
$.getScript('https://kmahelona.github.io/ipython_notebook_goodies/ipython_notebook_toc.js')