Dynamic Systems:
Linear Transform
Table of Contents
$$\begin{align*}
\langle x, e^{j\omega t} \rangle &= \int \left(e^{j \omega t} \right)^Hx(t) \,dt \\
&= \int x(t)e^{-j \omega t} \, dt \\
& = X(j\omega)
\end{align*}
$$
$$X(j\omega) = \int x(t)e^{-j \omega t} \, dt $$
Example
Example
$$ \begin{align*} x(t) &= 3e^{-2t}u(t)-2e^{-t}u(t)\\\\ X(s) &= \underbrace{3 \over s+2}_{\text{Re}(s) > -2} - \underbrace{2 \over s+1}_{\text{Re}(s) > -1} = {3(s+1) - 2(s+2) \over (s+2)(s+1)} = \underbrace{s-1 \over s^2 + 3s + 2}_{\text{Re}(s)>-1} \end{align*} $$Example
Sifting property
Example
$$\dot{y}(t) + y(t) = \delta(t)$$Example
$$ \begin{align*} \ddot{y}(t) + 3\dot{y}(t) + 2y(t) &= \delta(t)\\\\ s^2Y(s) + 3sY(s) + 2Y(s) &= 1 \end{align*} $$Determine the frequency response from poles and zeros
$\quad\;\Rightarrow$ Graphical evaluation or Bode plot
%%javascript
$.getScript('https://kmahelona.github.io/ipython_notebook_goodies/ipython_notebook_toc.js')