Convolutional Neural Networks (CNN)


By Prof. Seungchul Lee
http://iai.postech.ac.kr/
Industrial AI Lab at POSTECH

Table of Contents

0. Video Lectures

In [1]:
%%html 
<center><iframe src="https://www.youtube.com/embed/oK3Q6yCsXAg?rel=0" 
width="560" height="315" frameborder="0" allowfullscreen></iframe></center>
In [4]:
%%html 
<center><iframe src="https://www.youtube.com/embed/RgsliaqKjRc?rel=0" 
width="560" height="315" frameborder="0" allowfullscreen></iframe></center>
In [12]:
%%html
<center><iframe src="https://www.youtube.com/embed/UyGy4eu1u90?end=728&rel=0" 
width="560" height="315" frameborder="0" allowfullscreen></iframe></center>

1. Convolution

1.1. 1D Convolution


1.2. Convolution on Image (= Convolution in 2D)

Filter (or Kernel)

  • Modify or enhance an image by filtering
  • Filter images to emphasize certain features or remove other features
  • Filtering includes smoothing, sharpening and edge enhancement

  • Discrete convolution can be viewed as element-wise multiplication by a matrix