Model: "mobilenet_1.00_224"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 224, 224, 3)] 0
_________________________________________________________________
conv1 (Conv2D) (None, 112, 112, 32) 864
_________________________________________________________________
conv1_bn (BatchNormalization (None, 112, 112, 32) 128
_________________________________________________________________
conv1_relu (ReLU) (None, 112, 112, 32) 0
_________________________________________________________________
conv_dw_1 (DepthwiseConv2D) (None, 112, 112, 32) 288
_________________________________________________________________
conv_dw_1_bn (BatchNormaliza (None, 112, 112, 32) 128
_________________________________________________________________
conv_dw_1_relu (ReLU) (None, 112, 112, 32) 0
_________________________________________________________________
conv_pw_1 (Conv2D) (None, 112, 112, 64) 2048
_________________________________________________________________
conv_pw_1_bn (BatchNormaliza (None, 112, 112, 64) 256
_________________________________________________________________
conv_pw_1_relu (ReLU) (None, 112, 112, 64) 0
_________________________________________________________________
conv_pad_2 (ZeroPadding2D) (None, 113, 113, 64) 0
_________________________________________________________________
conv_dw_2 (DepthwiseConv2D) (None, 56, 56, 64) 576
_________________________________________________________________
conv_dw_2_bn (BatchNormaliza (None, 56, 56, 64) 256
_________________________________________________________________
conv_dw_2_relu (ReLU) (None, 56, 56, 64) 0
_________________________________________________________________
conv_pw_2 (Conv2D) (None, 56, 56, 128) 8192
_________________________________________________________________
conv_pw_2_bn (BatchNormaliza (None, 56, 56, 128) 512
_________________________________________________________________
conv_pw_2_relu (ReLU) (None, 56, 56, 128) 0
_________________________________________________________________
conv_dw_3 (DepthwiseConv2D) (None, 56, 56, 128) 1152
_________________________________________________________________
conv_dw_3_bn (BatchNormaliza (None, 56, 56, 128) 512
_________________________________________________________________
conv_dw_3_relu (ReLU) (None, 56, 56, 128) 0
_________________________________________________________________
conv_pw_3 (Conv2D) (None, 56, 56, 128) 16384
_________________________________________________________________
conv_pw_3_bn (BatchNormaliza (None, 56, 56, 128) 512
_________________________________________________________________
conv_pw_3_relu (ReLU) (None, 56, 56, 128) 0
_________________________________________________________________
conv_pad_4 (ZeroPadding2D) (None, 57, 57, 128) 0
_________________________________________________________________
conv_dw_4 (DepthwiseConv2D) (None, 28, 28, 128) 1152
_________________________________________________________________
conv_dw_4_bn (BatchNormaliza (None, 28, 28, 128) 512
_________________________________________________________________
conv_dw_4_relu (ReLU) (None, 28, 28, 128) 0
_________________________________________________________________
conv_pw_4 (Conv2D) (None, 28, 28, 256) 32768
_________________________________________________________________
conv_pw_4_bn (BatchNormaliza (None, 28, 28, 256) 1024
_________________________________________________________________
conv_pw_4_relu (ReLU) (None, 28, 28, 256) 0
_________________________________________________________________
conv_dw_5 (DepthwiseConv2D) (None, 28, 28, 256) 2304
_________________________________________________________________
conv_dw_5_bn (BatchNormaliza (None, 28, 28, 256) 1024
_________________________________________________________________
conv_dw_5_relu (ReLU) (None, 28, 28, 256) 0
_________________________________________________________________
conv_pw_5 (Conv2D) (None, 28, 28, 256) 65536
_________________________________________________________________
conv_pw_5_bn (BatchNormaliza (None, 28, 28, 256) 1024
_________________________________________________________________
conv_pw_5_relu (ReLU) (None, 28, 28, 256) 0
_________________________________________________________________
conv_pad_6 (ZeroPadding2D) (None, 29, 29, 256) 0
_________________________________________________________________
conv_dw_6 (DepthwiseConv2D) (None, 14, 14, 256) 2304
_________________________________________________________________
conv_dw_6_bn (BatchNormaliza (None, 14, 14, 256) 1024
_________________________________________________________________
conv_dw_6_relu (ReLU) (None, 14, 14, 256) 0
_________________________________________________________________
conv_pw_6 (Conv2D) (None, 14, 14, 512) 131072
_________________________________________________________________
conv_pw_6_bn (BatchNormaliza (None, 14, 14, 512) 2048
_________________________________________________________________
conv_pw_6_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_dw_7 (DepthwiseConv2D) (None, 14, 14, 512) 4608
_________________________________________________________________
conv_dw_7_bn (BatchNormaliza (None, 14, 14, 512) 2048
_________________________________________________________________
conv_dw_7_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_pw_7 (Conv2D) (None, 14, 14, 512) 262144
_________________________________________________________________
conv_pw_7_bn (BatchNormaliza (None, 14, 14, 512) 2048
_________________________________________________________________
conv_pw_7_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_dw_8 (DepthwiseConv2D) (None, 14, 14, 512) 4608
_________________________________________________________________
conv_dw_8_bn (BatchNormaliza (None, 14, 14, 512) 2048
_________________________________________________________________
conv_dw_8_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_pw_8 (Conv2D) (None, 14, 14, 512) 262144
_________________________________________________________________
conv_pw_8_bn (BatchNormaliza (None, 14, 14, 512) 2048
_________________________________________________________________
conv_pw_8_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_dw_9 (DepthwiseConv2D) (None, 14, 14, 512) 4608
_________________________________________________________________
conv_dw_9_bn (BatchNormaliza (None, 14, 14, 512) 2048
_________________________________________________________________
conv_dw_9_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_pw_9 (Conv2D) (None, 14, 14, 512) 262144
_________________________________________________________________
conv_pw_9_bn (BatchNormaliza (None, 14, 14, 512) 2048
_________________________________________________________________
conv_pw_9_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_dw_10 (DepthwiseConv2D) (None, 14, 14, 512) 4608
_________________________________________________________________
conv_dw_10_bn (BatchNormaliz (None, 14, 14, 512) 2048
_________________________________________________________________
conv_dw_10_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_pw_10 (Conv2D) (None, 14, 14, 512) 262144
_________________________________________________________________
conv_pw_10_bn (BatchNormaliz (None, 14, 14, 512) 2048
_________________________________________________________________
conv_pw_10_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_dw_11 (DepthwiseConv2D) (None, 14, 14, 512) 4608
_________________________________________________________________
conv_dw_11_bn (BatchNormaliz (None, 14, 14, 512) 2048
_________________________________________________________________
conv_dw_11_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_pw_11 (Conv2D) (None, 14, 14, 512) 262144
_________________________________________________________________
conv_pw_11_bn (BatchNormaliz (None, 14, 14, 512) 2048
_________________________________________________________________
conv_pw_11_relu (ReLU) (None, 14, 14, 512) 0
_________________________________________________________________
conv_pad_12 (ZeroPadding2D) (None, 15, 15, 512) 0
_________________________________________________________________
conv_dw_12 (DepthwiseConv2D) (None, 7, 7, 512) 4608
_________________________________________________________________
conv_dw_12_bn (BatchNormaliz (None, 7, 7, 512) 2048
_________________________________________________________________
conv_dw_12_relu (ReLU) (None, 7, 7, 512) 0
_________________________________________________________________
conv_pw_12 (Conv2D) (None, 7, 7, 1024) 524288
_________________________________________________________________
conv_pw_12_bn (BatchNormaliz (None, 7, 7, 1024) 4096
_________________________________________________________________
conv_pw_12_relu (ReLU) (None, 7, 7, 1024) 0
_________________________________________________________________
conv_dw_13 (DepthwiseConv2D) (None, 7, 7, 1024) 9216
_________________________________________________________________
conv_dw_13_bn (BatchNormaliz (None, 7, 7, 1024) 4096
_________________________________________________________________
conv_dw_13_relu (ReLU) (None, 7, 7, 1024) 0
_________________________________________________________________
conv_pw_13 (Conv2D) (None, 7, 7, 1024) 1048576
_________________________________________________________________
conv_pw_13_bn (BatchNormaliz (None, 7, 7, 1024) 4096
_________________________________________________________________
conv_pw_13_relu (ReLU) (None, 7, 7, 1024) 0
_________________________________________________________________
global_average_pooling2d (Gl (None, 1024) 0
_________________________________________________________________
reshape_1 (Reshape) (None, 1, 1, 1024) 0
_________________________________________________________________
dropout (Dropout) (None, 1, 1, 1024) 0
_________________________________________________________________
conv_preds (Conv2D) (None, 1, 1, 1000) 1025000
_________________________________________________________________
reshape_2 (Reshape) (None, 1000) 0
_________________________________________________________________
predictions (Activation) (None, 1000) 0
=================================================================
Total params: 4,253,864
Trainable params: 4,231,976
Non-trainable params: 21,888
_________________________________________________________________