kstp_part_2
한국소성가공학회 실습 2
Predict Bulk Modulus with PyCaret
By Prof. Seungchul Lee
http://iai.postech.ac.kr/
Industrial AI Lab at POSTECH
1. AI in Materials Science¶ 1.1. The Fourth Paradigm in Materials Science¶
Image: Ankit Agrawal and Alok Choudhary, "Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science," APL Materials 4, 053208 (2016); https://doi.org/10.1063/1.4946894
1.2. Fast Materials Screening¶
AI-based methods as a pre-screening tool for traditional methods like DFT
Image: Park, H., Bartel, C. J., Ceder, G., Zapol, P., "Layered Transition Metal Oxides as Ca Intercalation Cathodes: A Systematic First-Principles Evaluation," Adv. Energy Mater, 2021, 11, 2101698. https://doi.org/10.1002/aenm.202101698
1.3. Materials Database¶
The Materials Project is a database of predicted properties of materials using Density Functional Theory (DFT).
Structural information and Property data for inorganic materials
https://materialsproject.org/
2. PyCaret¶
AutoML
Automate from data preprocessing to model validation
Mounted at /content/drive
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
3. Regression¶ Descriptors
Extract features using matminer
Colvalent radius, s$\cdot$p$\cdot$d$\cdot$f orbital valence, oxidation state, space group, density, etc.
Bulk modulus is directly related the interatomic potential and volume per atoms
Dataset
Input: Descriptors
Output: Bulk modulus
Bulk modulus of a substance is a measure of how resistant to compression the substance is
Out[4]:
k_vrh
vpa
density
MagpieData mean MeltingT
MagpieData mean NUnfilled
packing fraction
MagpieData mode MeltingT
MagpieData minimum NUnfilled
MagpieData maximum GSvolume_pa
MagpieData mean GSvolume_pa
MagpieData minimum NValence
MagpieData mean NdUnfilled
MagpieData mode NUnfilled
MagpieData mean NpValence
MagpieData avg_dev NpUnfilled
MagpieData minimum MeltingT
MagpieData maximum MeltingT
MagpieData maximum NdValence
MagpieData mode GSvolume_pa
MagpieData mean MendeleevNumber
MagpieData minimum Electronegativity
MagpieData minimum MendeleevNumber
std_dev oxidation state
0
295.077545
12.957800
13.988541
2496.500000
4.000000
0.570238
1687.00
4.0
20.440000
17.265000
4.0
2.000
4.0
1.000000
2.000000
1687.00
3306.00
6.0
14.090000
67.500000
1.90
57.0
5.656854
1
74.370488
17.868860
6.519289
1401.760000
2.800000
0.788912
1211.40
0.0
54.230000
24.146000
2.0
1.200
3.0
0.800000
1.920000
1050.00
1768.00
10.0
10.245000
56.400000
0.95
8.0
0.000000
2
234.099927
15.435634
17.027465
2016.300000
3.500000
0.686917
2041.40
2.0
16.690000
15.437500
4.0
2.750
2.0
0.000000
0.000000
1941.00
2041.40
9.0
15.020000
58.000000
1.54
43.0
2.529822
3
30.178322
18.871482
3.312854
606.150000
0.500000
0.732266
453.69
0.0
22.890000
18.892917
1.0
0.000
1.0
0.000000
0.000000
453.69
923.00
10.0
16.593333
35.000000
0.98
1.0
0.000000
4
41.336301
19.547245
5.439796
633.502500
0.250000
0.705746
923.00
0.0
25.237586
21.902730
1.0
0.000
0.0
0.000000
0.000000
234.32
923.00
10.0
22.890000
52.000000
0.98
1.0
0.000000
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
7137
62.971555
11.111316
2.536134
470.408750
2.250000
0.587636
54.80
1.0
16.593333
12.401250
1.0
0.875
2.0
2.000000
1.000000
54.80
2183.00
3.0
9.105000
49.625000
0.98
1.0
3.043544
7138
278.173744
8.570548
5.426881
2277.285714
5.857143
0.686866
2348.00
5.0
13.010000
9.674286
3.0
3.000
5.0
0.571429
2.448980
2183.00
2348.00
3.0
7.172500
60.857143
1.63
46.0
3.346640
7139
32.487326
15.415494
1.283597
743.880588
1.705882
0.718573
453.69
1.0
20.440000
17.498431
1.0
0.000
1.0
0.470588
1.439446
453.69
1687.00
0.0
16.593333
19.117647
0.98
1.0
0.000000
7140
44.284962
16.322156
5.419970
388.491429
2.000000
0.345413
54.80
0.0
31.560000
16.214286
6.0
0.000
2.0
3.142857
0.571429
54.80
903.78
10.0
9.105000
83.857143
1.65
69.0
3.082207
7141
71.567048
11.830199
4.046538
622.086667
1.333333
0.675695
54.80
1.0
16.593333
12.256111
1.0
0.000
1.0
1.333333
0.888889
54.80
1357.77
10.0
9.105000
50.666667
0.98
1.0
1.732051
7142 rows × 23 columns
3.2. Pipeline Setup¶
Initializes the training environment and creates the transformation pipeline
Setup function must be called before executing any other functions
It takes two mandatory parameters: "data" and "target"
Description
Value
0
session_id
123
1
Target
k_vrh
2
Original Data
(7142, 23)
3
Missing Values
True
4
Numeric Features
22
5
Categorical Features
0
6
Ordinal Features
False
7
High Cardinality Features
False
8
High Cardinality Method
None
9
Transformed Train Set
(6427, 22)
10
Transformed Test Set
(715, 22)
11
Shuffle Train-Test
True
12
Stratify Train-Test
False
13
Fold Generator
KFold
14
Fold Number
5
15
CPU Jobs
-1
16
Use GPU
False
17
Log Experiment
False
18
Experiment Name
reg-default-name
19
USI
0a0e
20
Imputation Type
simple
21
Iterative Imputation Iteration
None
22
Numeric Imputer
mean
23
Iterative Imputation Numeric Model
None
24
Categorical Imputer
constant
25
Iterative Imputation Categorical Model
None
26
Unknown Categoricals Handling
least_frequent
27
Normalize
False
28
Normalize Method
None
29
Transformation
False
30
Transformation Method
None
31
PCA
False
32
PCA Method
None
33
PCA Components
None
34
Ignore Low Variance
False
35
Combine Rare Levels
False
36
Rare Level Threshold
None
37
Numeric Binning
False
38
Remove Outliers
False
39
Outliers Threshold
None
40
Remove Multicollinearity
False
41
Multicollinearity Threshold
None
42
Remove Perfect Collinearity
True
43
Clustering
False
44
Clustering Iteration
None
45
Polynomial Features
False
46
Polynomial Degree
None
47
Trignometry Features
False
48
Polynomial Threshold
None
49
Group Features
False
50
Feature Selection
False
51
Feature Selection Method
classic
52
Features Selection Threshold
None
53
Feature Interaction
False
54
Feature Ratio
False
55
Interaction Threshold
None
56
Transform Target
False
57
Transform Target Method
box-cox
INFO:logs:create_model_container: 0
INFO:logs:master_model_container: 0
INFO:logs:display_container: 1
INFO:logs:Pipeline(memory=None,
steps=[('dtypes',
DataTypes_Auto_infer(categorical_features=[],
display_types=False, features_todrop=[],
id_columns=[], ml_usecase='regression',
numerical_features=[], target='k_vrh',
time_features=[])),
('imputer',
Simple_Imputer(categorical_strategy='not_available',
fill_value_categorical=None,
fill_value_numerical=None,
numeric_strategy=...
('scaling', 'passthrough'), ('P_transform', 'passthrough'),
('binn', 'passthrough'), ('rem_outliers', 'passthrough'),
('cluster_all', 'passthrough'),
('dummy', Dummify(target='k_vrh')),
('fix_perfect', Remove_100(target='k_vrh')),
('clean_names', Clean_Colum_Names()),
('feature_select', 'passthrough'), ('fix_multi', 'passthrough'),
('dfs', 'passthrough'), ('pca', 'passthrough')],
verbose=False)
INFO:logs:setup() succesfully completed......................................
Normalization
Preprocessing such as PCA, feature selection, and normalization is possible
We can normalize the data by setting "normalize=True" in "setup()"
Description
Value
0
session_id
123
1
Target
k_vrh
2
Original Data
(7142, 23)
3
Missing Values
True
4
Numeric Features
22
5
Categorical Features
0
6
Ordinal Features
False
7
High Cardinality Features
False
8
High Cardinality Method
None
9
Transformed Train Set
(6427, 22)
10
Transformed Test Set
(715, 22)
11
Shuffle Train-Test
True
12
Stratify Train-Test
False
13
Fold Generator
KFold
14
Fold Number
5
15
CPU Jobs
-1
16
Use GPU
False
17
Log Experiment
False
18
Experiment Name
reg-default-name
19
USI
a07b
20
Imputation Type
simple
21
Iterative Imputation Iteration
None
22
Numeric Imputer
mean
23
Iterative Imputation Numeric Model
None
24
Categorical Imputer
constant
25
Iterative Imputation Categorical Model
None
26
Unknown Categoricals Handling
least_frequent
27
Normalize
True
28
Normalize Method
zscore
29
Transformation
False
30
Transformation Method
None
31
PCA
False
32
PCA Method
None
33
PCA Components
None
34
Ignore Low Variance
False
35
Combine Rare Levels
False
36
Rare Level Threshold
None
37
Numeric Binning
False
38
Remove Outliers
False
39
Outliers Threshold
None
40
Remove Multicollinearity
False
41
Multicollinearity Threshold
None
42
Remove Perfect Collinearity
True
43
Clustering
False
44
Clustering Iteration
None
45
Polynomial Features
False
46
Polynomial Degree
None
47
Trignometry Features
False
48
Polynomial Threshold
None
49
Group Features
False
50
Feature Selection
False
51
Feature Selection Method
classic
52
Features Selection Threshold
None
53
Feature Interaction
False
54
Feature Ratio
False
55
Interaction Threshold
None
56
Transform Target
False
57
Transform Target Method
box-cox
INFO:logs:create_model_container: 0
INFO:logs:master_model_container: 0
INFO:logs:display_container: 1
INFO:logs:Pipeline(memory=None,
steps=[('dtypes',
DataTypes_Auto_infer(categorical_features=[],
display_types=False, features_todrop=[],
id_columns=[], ml_usecase='regression',
numerical_features=[], target='k_vrh',
time_features=[])),
('imputer',
Simple_Imputer(categorical_strategy='not_available',
fill_value_categorical=None,
fill_value_numerical=None,
numeric_strategy=...
target='k_vrh')),
('P_transform', 'passthrough'), ('binn', 'passthrough'),
('rem_outliers', 'passthrough'), ('cluster_all', 'passthrough'),
('dummy', Dummify(target='k_vrh')),
('fix_perfect', Remove_100(target='k_vrh')),
('clean_names', Clean_Colum_Names()),
('feature_select', 'passthrough'), ('fix_multi', 'passthrough'),
('dfs', 'passthrough'), ('pca', 'passthrough')],
verbose=False)
INFO:logs:setup() succesfully completed......................................
3.3. Training¶
Top-performing model based on the criteria defined in “sort” parameter
Show performances based on 10-fold cross validation
Model
MAE
MSE
RMSE
R2
RMSLE
MAPE
TT (Sec)
et
Extra Trees Regressor
12.0479
594.9934
24.2459
0.8960
0.3211
0.2908
2.096
lightgbm
Light Gradient Boosting Machine
13.1333
599.6549
24.3223
0.8953
0.3345
0.3181
0.408
rf
Random Forest Regressor
13.4195
698.4265
26.3109
0.8778
0.3296
0.3245
5.834
gbr
Gradient Boosting Regressor
15.6848
703.4731
26.3972
0.8770
0.3865
0.4309
1.590
knn
K Neighbors Regressor
18.8921
1017.3413
31.8747
0.8216
0.4326
0.4564
0.196
dt
Decision Tree Regressor
18.9631
1250.4976
35.2976
0.7808
0.4398
0.3759
0.178
lr
Linear Regression
27.6286
1617.5449
40.1885
0.7166
0.6450
1.3883
1.148
ridge
Ridge Regression
27.6279
1617.5062
40.1880
0.7166
0.6449
1.3880
0.038
br
Bayesian Ridge
27.6245
1617.4076
40.1869
0.7166
0.6440
1.3864
0.038
huber
Huber Regressor
27.3125
1641.9605
40.4763
0.7124
0.6599
1.5571
0.170
lasso
Lasso Regression
28.2483
1673.2683
40.8707
0.7068
0.6444
1.3864
0.032
ada
AdaBoost Regressor
32.6235
1866.3366
43.1900
0.6720
0.7023
1.1851
0.622
en
Elastic Net
31.0166
1901.4729
43.5832
0.6667
0.6450
1.1215
0.034
par
Passive Aggressive Regressor
30.9325
2130.8661
46.0131
0.6269
0.7398
1.9523
0.032
omp
Orthogonal Matching Pursuit
33.7089
2237.7258
47.2829
0.6076
0.6832
1.6168
0.040
lar
Least Angle Regression
32.9794
2343.6933
46.7437
0.5925
0.7113
1.5937
0.036
llar
Lasso Least Angle Regression
60.9662
5703.7367
75.5084
-0.0005
1.0052
2.6295
0.032
dummy
Dummy Regressor
60.9662
5703.7368
75.5084
-0.0005
1.0052
2.6295
0.016
INFO:logs:create_model_container: 18
INFO:logs:master_model_container: 18
INFO:logs:display_container: 2
INFO:logs:ExtraTreesRegressor(bootstrap=False, ccp_alpha=0.0, criterion='mse',
max_depth=None, max_features='auto', max_leaf_nodes=None,
max_samples=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=100, n_jobs=-1, oob_score=False,
random_state=123, verbose=0, warm_start=False)
INFO:logs:compare_models() succesfully completed......................................
MAE
MSE
RMSE
R2
RMSLE
MAPE
Fold
0
28.5412
1877.9492
43.3353
0.6860
0.6319
1.1045
1
28.4220
1503.8801
38.7799
0.7173
0.6346
1.0561
2
28.4987
1619.6501
40.2449
0.7234
0.6728
1.2390
3
27.8673
1575.6525
39.6945
0.7202
0.6126
0.8133
4
27.9125
1789.2094
42.2990
0.6869
0.6699
2.7191
Mean
28.2483
1673.2683
40.8707
0.7068
0.6444
1.3864
Std
0.2955
138.8760
1.6889
0.0167
0.0234
0.6804
INFO:logs:create_model_container: 19
INFO:logs:master_model_container: 19
INFO:logs:display_container: 3
INFO:logs:Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=123,
selection='cyclic', tol=0.0001, warm_start=False)
INFO:logs:create_model() succesfully completed......................................
Turn off the K-fold cross validation
It should be noted that the performance of the model may be overestimated
Model
MAE
MSE
RMSE
R2
RMSLE
MAPE
TT (Sec)
lightgbm
Light Gradient Boosting Machine
12.5440
451.4136
21.2465
0.9219
0.3249
0.2789
0.29
rf
Random Forest Regressor
11.9251
463.2798
21.5239
0.9199
0.3017
0.2681
5.70
et
Extra Trees Regressor
11.3981
556.9921
23.6007
0.9036
0.2978
0.2479
2.62
gbr
Gradient Boosting Regressor
15.6892
668.0345
25.8464
0.8844
0.3723
0.3922
2.55
knn
K Neighbors Regressor
17.9950
827.4488
28.7654
0.8569
0.3869
0.3661
0.03
dt
Decision Tree Regressor
18.1102
1040.7476
32.2606
0.8200
0.3962
0.3470
0.15
lr
Linear Regression
29.1737
1809.9832
42.5439
0.6869
0.7109
2.3270
0.02
ridge
Ridge Regression
29.1751
1810.0604
42.5448
0.6869
0.7108
2.3277
0.02
lar
Least Angle Regression
29.1737
1809.9846
42.5439
0.6869
0.7109
2.3270
0.02
br
Bayesian Ridge
29.1856
1810.6336
42.5515
0.6868
0.7105
2.3321
0.03
lasso
Lasso Regression
30.0671
1897.7419
43.5631
0.6717
0.7275
2.6124
0.02
en
Elastic Net
32.2494
1944.7172
44.0989
0.6636
0.7063
1.8929
0.01
huber
Huber Regressor
29.3523
2053.9846
45.3209
0.6447
0.7408
2.9267
0.22
ada
AdaBoost Regressor
36.0101
2121.9747
46.0649
0.6329
0.8378
1.4045
0.89
par
Passive Aggressive Regressor
32.5164
2264.5766
47.5876
0.6082
0.8107
3.0197
0.02
omp
Orthogonal Matching Pursuit
36.1562
2731.0672
52.2596
0.5275
0.7631
3.2885
0.01
llar
Lasso Least Angle Regression
61.6404
5780.9048
76.0323
-0.0001
1.0266
2.8614
0.02
dummy
Dummy Regressor
61.6404
5780.9048
76.0323
-0.0001
1.0266
2.8614
0.00
INFO:logs:create_model_container: 19
INFO:logs:master_model_container: 19
INFO:logs:display_container: 4
INFO:logs:LGBMRegressor(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,
importance_type='split', learning_rate=0.1, max_depth=-1,
min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,
n_estimators=100, n_jobs=-1, num_leaves=31, objective=None,
random_state=123, reg_alpha=0.0, reg_lambda=0.0, silent='warn',
subsample=1.0, subsample_for_bin=200000, subsample_freq=0)
INFO:logs:compare_models() succesfully completed......................................
MAE
MSE
RMSE
R2
RMSLE
MAPE
0
30.067101
1897.741943
43.563099
0.6717
0.7275
2.6124
INFO:logs:display_container: 5
INFO:logs:Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=123,
selection='cyclic', tol=0.0001, warm_start=False)
INFO:logs:create_models() succesfully completed......................................
INFO:logs:Initializing evaluate_model()
INFO:logs:evaluate_model(estimator=Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=123,
selection='cyclic', tol=0.0001, warm_start=False), fold=None, fit_kwargs=None, plot_kwargs=None, feature_name=None, groups=None, use_train_data=False)
3.5. Hyperparameter Tuning¶
Grid search, random search, Bayesian optimization, etc.
It can be seen that the performance improves through hyperparameter tuning
MAE
MSE
RMSE
R2
RMSLE
MAPE
Fold
0
27.6558
1813.2025
42.5817
0.6968
0.6264
1.0405
1
28.1306
1457.2672
38.1742
0.7261
0.6463
1.0540
2
27.9286
1596.6030
39.9575
0.7274
0.6776
1.2729
3
27.3751
1530.2343
39.1182
0.7283
0.6077
0.7910
4
27.1054
1712.9308
41.3876
0.7003
0.6683
2.7697
Mean
27.6391
1622.0476
40.2438
0.7158
0.6452
1.3856
Std
0.3688
127.3025
1.5752
0.0141
0.0259
0.7086
INFO:logs:create_model_container: 21
INFO:logs:master_model_container: 21
INFO:logs:display_container: 6
INFO:logs:Lasso(alpha=0.19, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=123,
selection='cyclic', tol=0.0001, warm_start=False)
INFO:logs:tune_model() succesfully completed......................................
Before hyperparameter tuning
Out[13]:
Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=123,
selection='cyclic', tol=0.0001, warm_start=False)
After hyperparameter tuning
Out[14]:
Lasso(alpha=0.19, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=123,
selection='cyclic', tol=0.0001, warm_start=False)
3.6. Prediction¶
Generates the label using a trained model
Test the trained model on unseen data
INFO:logs:Initializing predict_model()
INFO:logs:predict_model(estimator=Lasso(alpha=0.19, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=123,
selection='cyclic', tol=0.0001, warm_start=False), probability_threshold=None, encoded_labels=True, drift_report=False, raw_score=False, round=4, verbose=True, ml_usecase=MLUsecase.REGRESSION, display=None, drift_kwargs=None)
INFO:logs:Checking exceptions
INFO:logs:Preloading libraries
INFO:logs:Preparing display monitor
Model
MAE
MSE
RMSE
R2
RMSLE
MAPE
0
Lasso Regression
29.2663
1829.792603
42.7761
0.6834
0.7118
2.4135
Out[15]:
vpa
density
MagpieData mean MeltingT
MagpieData mean NUnfilled
packing fraction
MagpieData mode MeltingT
MagpieData minimum NUnfilled
MagpieData maximum GSvolume_pa
MagpieData mean GSvolume_pa
MagpieData minimum NValence
...
MagpieData minimum MeltingT
MagpieData maximum MeltingT
MagpieData maximum NdValence
MagpieData mode GSvolume_pa
MagpieData mean MendeleevNumber
MagpieData minimum Electronegativity
MagpieData minimum MendeleevNumber
std_dev oxidation state
k_vrh
Label
0
0.701711
-0.798078
-0.837051
0.211009
1.895607
-0.898599
-0.368097
4.474749
2.278716
-0.918808
...
-0.834311
-0.157167
-1.604618
-0.717333
-1.143494
-1.529214
-1.211086
0.443816
63.367096
54.765396
1
-0.617081
-0.457117
-0.511846
-0.420388
-0.753925
-0.898599
-0.368097
-0.708838
-1.022111
-0.093024
...
-0.834311
-0.006234
0.843769
-0.717333
0.627458
0.276397
0.239350
0.447951
76.100433
90.682869
2
1.468199
-0.278924
-0.616194
-1.192096
-1.116219
-0.177000
-1.006112
0.236755
0.562947
2.109065
...
0.128198
-1.454171
0.843769
-0.222338
1.089826
0.541220
1.231753
0.528459
43.414299
21.156166
3
-0.572876
-0.881211
-0.652042
0.304550
-1.339661
-0.900070
-0.368097
-0.708838
-0.900161
-0.093024
...
-0.836273
-0.006234
-1.332575
-0.717333
0.729237
0.276397
0.239350
0.421930
36.862297
93.154945
4
-0.867244
2.043521
1.319934
3.859084
1.163660
1.695573
2.183963
-0.534352
-0.944250
-0.368285
...
1.207558
0.477466
-1.604618
-0.914362
-0.643324
-0.108800
-0.638545
2.590237
210.491104
276.203522
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
710
-0.107009
-0.698368
-0.290859
1.333494
0.190230
-0.898599
0.269918
0.111275
-0.156392
-0.368285
...
-0.834311
-0.157167
-1.604618
-0.717333
-1.021360
-0.493996
-0.982069
-1.120963
114.602539
94.318146
711
-0.639954
-0.528004
-0.777578
-0.892767
-0.540587
-0.898599
-0.368097
-0.052050
-0.970308
-0.918808
...
-0.834311
-0.699374
0.843769
-0.717333
0.575696
-1.192166
-1.325594
0.487291
119.183334
71.598373
712
0.407570
0.451744
0.210555
0.912562
0.871026
1.091488
-1.006112
-0.261630
0.229826
-0.368285
...
-0.563430
-0.157167
0.843769
0.621347
-1.701824
-0.156949
-0.982069
-1.120963
78.364815
87.682449
713
0.579226
-0.080156
0.558155
0.865792
-0.553754
-0.143086
0.269918
0.236755
0.769799
-0.093024
...
0.173435
0.216006
0.843769
0.438336
0.473336
-0.229173
0.277519
-1.120963
35.157047
91.986328
714
-0.841389
-0.216850
-1.202937
0.042637
-0.608252
-0.898599
0.269918
-0.312777
-0.692642
-0.368285
...
-0.834311
-1.203634
0.843769
-0.717333
1.250346
0.444921
1.384430
0.787872
184.245941
107.263069
715 rows × 24 columns
Prediction on any data point
MAE
MSE
RMSE
R2
RMSLE
MAPE
Fold
0
13.4856
882.6203
29.7089
0.8524
0.3264
0.3242
1
13.8110
560.0324
23.6650
0.8947
0.3412
0.3628
2
13.0609
563.2316
23.7325
0.9038
0.3299
0.2862
3
13.7995
819.6946
28.6303
0.8545
0.3059
0.2450
4
12.9405
666.5537
25.8177
0.8834
0.3445
0.4045
Mean
13.4195
698.4265
26.3109
0.8778
0.3296
0.3245
Std
0.3633
131.9695
2.4827
0.0209
0.0136
0.0559
INFO:logs:create_model_container: 22
INFO:logs:master_model_container: 22
INFO:logs:display_container: 8
INFO:logs:RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
max_depth=None, max_features='auto', max_leaf_nodes=None,
max_samples=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=100, n_jobs=-1, oob_score=False,
random_state=123, verbose=0, warm_start=False)
INFO:logs:create_model() succesfully completed......................................
Model prediction: [161.26855656]
Ground truth: 157.38629328397334
4. Classification¶
Classify whether the material is metal or non-metal from composition information
Input: Descriptors obtained from composition
Output: 0 (Non-metal) or 1 (Metal)
Follow the same procedure as for regression task
Out[19]:
formula
is_metal
H
He
Li
Be
B
C
N
O
...
Fm
Md
No
Lr
0-norm
2-norm
3-norm
5-norm
7-norm
10-norm
0
Ag(AuS)2
True
0.0
0
0.0
0.0
0.00
0.0
0.0
0.00
...
0
0
0
0
3
0.600000
0.514256
0.460906
0.441882
0.428730
1
Ag(W3Br7)2
True
0.0
0
0.0
0.0
0.00
0.0
0.0
0.00
...
0
0
0
0
3
0.726873
0.683796
0.668584
0.666919
0.666681
2
Ag0.5Ge1Pb1.75S4
False
0.0
0
0.0
0.0
0.00
0.0
0.0
0.00
...
0
0
0
0
4
0.621647
0.569761
0.553591
0.551970
0.551738
3
Ag0.5Ge1Pb1.75Se4
False
0.0
0
0.0
0.0
0.00
0.0
0.0
0.00
...
0
0
0
0
4
0.621647
0.569761
0.553591
0.551970
0.551738
4
Ag2BBr
True
0.0
0
0.0
0.0
0.25
0.0
0.0
0.00
...
0
0
0
0
3
0.612372
0.538609
0.506099
0.501109
0.500098
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
4916
ZrTaN3
False
0.0
0
0.0
0.0
0.00
0.0
0.6
0.00
...
0
0
0
0
3
0.663325
0.614463
0.600984
0.600078
0.600002
4917
ZrTe
True
0.0
0
0.0
0.0
0.00
0.0
0.0
0.00
...
0
0
0
0
2
0.707107
0.629961
0.574349
0.552045
0.535887
4918
ZrTi2O
True
0.0
0
0.0
0.0
0.00
0.0
0.0
0.25
...
0
0
0
0
3
0.612372
0.538609
0.506099
0.501109
0.500098
4919
ZrTiF6
True
0.0
0
0.0
0.0
0.00
0.0
0.0
0.00
...
0
0
0
0
3
0.770552
0.752308
0.750039
0.750001
0.750000
4920
ZrW2
True
0.0
0
0.0
0.0
0.00
0.0
0.0
0.00
...
0
0
0
0
2
0.745356
0.693361
0.670782
0.667408
0.666732
4921 rows × 111 columns
Use the ramaining data except formula
Description
Value
0
session_id
123
1
Target
is_metal
2
Target Type
Binary
3
Label Encoded
False: 0, True: 1
4
Original Data
(4921, 110)
5
Missing Values
False
6
Numeric Features
85
7
Categorical Features
24
8
Ordinal Features
False
9
High Cardinality Features
False
10
High Cardinality Method
None
11
Transformed Train Set
(4428, 109)
12
Transformed Test Set
(493, 109)
13
Shuffle Train-Test
True
14
Stratify Train-Test
False
15
Fold Generator
StratifiedKFold
16
Fold Number
5
17
CPU Jobs
-1
18
Use GPU
False
19
Log Experiment
False
20
Experiment Name
clf-default-name
21
USI
17db
22
Imputation Type
simple
23
Iterative Imputation Iteration
None
24
Numeric Imputer
mean
25
Iterative Imputation Numeric Model
None
26
Categorical Imputer
constant
27
Iterative Imputation Categorical Model
None
28
Unknown Categoricals Handling
least_frequent
29
Normalize
False
30
Normalize Method
None
31
Transformation
False
32
Transformation Method
None
33
PCA
False
34
PCA Method
None
35
PCA Components
None
36
Ignore Low Variance
False
37
Combine Rare Levels
False
38
Rare Level Threshold
None
39
Numeric Binning
False
40
Remove Outliers
False
41
Outliers Threshold
None
42
Remove Multicollinearity
False
43
Multicollinearity Threshold
None
44
Remove Perfect Collinearity
True
45
Clustering
False
46
Clustering Iteration
None
47
Polynomial Features
False
48
Polynomial Degree
None
49
Trignometry Features
False
50
Polynomial Threshold
None
51
Group Features
False
52
Feature Selection
False
53
Feature Selection Method
classic
54
Features Selection Threshold
None
55
Feature Interaction
False
56
Feature Ratio
False
57
Interaction Threshold
None
58
Fix Imbalance
False
59
Fix Imbalance Method
SMOTE
INFO:logs:create_model_container: 0
INFO:logs:master_model_container: 0
INFO:logs:display_container: 1
INFO:logs:Pipeline(memory=None,
steps=[('dtypes',
DataTypes_Auto_infer(categorical_features=[],
display_types=False, features_todrop=[],
id_columns=[],
ml_usecase='classification',
numerical_features=[], target='is_metal',
time_features=[])),
('imputer',
Simple_Imputer(categorical_strategy='not_available',
fill_value_categorical=None,
fill_value_numerical=None,
numeric_st...
('scaling', 'passthrough'), ('P_transform', 'passthrough'),
('binn', 'passthrough'), ('rem_outliers', 'passthrough'),
('cluster_all', 'passthrough'),
('dummy', Dummify(target='is_metal')),
('fix_perfect', Remove_100(target='is_metal')),
('clean_names', Clean_Colum_Names()),
('feature_select', 'passthrough'), ('fix_multi', 'passthrough'),
('dfs', 'passthrough'), ('pca', 'passthrough')],
verbose=False)
INFO:logs:setup() succesfully completed......................................
Classification metrics
Accuracy, AUC, Recall, F1, etc.
For all metrics, the closer to 1, the better the classification performance
Model
Accuracy
AUC
Recall
Prec.
F1
Kappa
MCC
TT (Sec)
lightgbm
Light Gradient Boosting Machine
0.9063
0.9644
0.9003
0.9118
0.9058
0.8126
0.8129
0.236
et
Extra Trees Classifier
0.9006
0.9638
0.8867
0.9127
0.8993
0.8013
0.8020
0.702
rf
Random Forest Classifier
0.8970
0.9598
0.8822
0.9096
0.8956
0.7941
0.7946
0.718
dt
Decision Tree Classifier
0.8740
0.8740
0.8637
0.8825
0.8727
0.7480
0.7487
0.090
lda
Linear Discriminant Analysis
0.8726
0.9383
0.8606
0.8825
0.8712
0.7453
0.7458
0.126
knn
K Neighbors Classifier
0.8713
0.9289
0.8538
0.8853
0.8691
0.7426
0.7432
0.638
ridge
Ridge Classifier
0.8701
0.0000
0.8601
0.8784
0.8690
0.7403
0.7408
0.026
lr
Logistic Regression
0.8650
0.9331
0.8660
0.8648
0.8652
0.7299
0.7303
0.244
gbc
Gradient Boosting Classifier
0.8629
0.9379
0.8764
0.8540
0.8649
0.7258
0.7264
0.818
ada
Ada Boost Classifier
0.8589
0.9337
0.8642
0.8555
0.8596
0.7177
0.7181
0.350
svm
SVM - Linear Kernel
0.8496
0.0000
0.8949
0.8313
0.8572
0.6991
0.7107
0.108
nb
Naive Bayes
0.7660
0.8791
0.6367
0.8597
0.7308
0.5322
0.5515
0.048
qda
Quadratic Discriminant Analysis
0.5452
0.5756
0.5143
0.7212
0.4123
0.0898
0.1255
0.092
dummy
Dummy Classifier
0.5005
0.5000
1.0000
0.5005
0.6671
0.0000
0.0000
0.036
INFO:logs:create_model_container: 14
INFO:logs:master_model_container: 14
INFO:logs:display_container: 2
INFO:logs:LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,
importance_type='split', learning_rate=0.1, max_depth=-1,
min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,
n_estimators=100, n_jobs=-1, num_leaves=31, objective=None,
random_state=123, reg_alpha=0.0, reg_lambda=0.0, silent='warn',
subsample=1.0, subsample_for_bin=200000, subsample_freq=0)
INFO:logs:compare_models() succesfully completed......................................
Accuracy
AUC
Recall
Prec.
F1
Kappa
MCC
Fold
0
0.8883
0.9587
0.8626
0.9097
0.8855
0.7765
0.7776
1
0.8905
0.9518
0.8939
0.8879
0.8909
0.7810
0.7811
2
0.8962
0.9639
0.8916
0.8998
0.8957
0.7923
0.7924
3
0.9062
0.9622
0.8849
0.9245
0.9043
0.8124
0.8132
4
0.9040
0.9622
0.8781
0.9262
0.9015
0.8079
0.8090
Mean
0.8970
0.9598
0.8822
0.9096
0.8956
0.7941
0.7946
Std
0.0071
0.0043
0.0113
0.0146
0.0068
0.0142
0.0144
INFO:logs:create_model_container: 15
INFO:logs:master_model_container: 15
INFO:logs:display_container: 3
INFO:logs:RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
criterion='gini', max_depth=None, max_features='auto',
max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
n_jobs=-1, oob_score=False, random_state=123, verbose=0,
warm_start=False)
INFO:logs:create_model() succesfully completed......................................
INFO:logs:Initializing evaluate_model()
INFO:logs:evaluate_model(estimator=RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
criterion='gini', max_depth=None, max_features='auto',
max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
n_jobs=-1, oob_score=False, random_state=123, verbose=0,
warm_start=False), fold=None, fit_kwargs=None, plot_kwargs=None, feature_name=None, groups=None, use_train_data=False)
INFO:logs:Initializing predict_model()
INFO:logs:predict_model(estimator=RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
criterion='gini', max_depth=None, max_features='auto',
max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
n_jobs=-1, oob_score=False, random_state=123, verbose=0,
warm_start=False), probability_threshold=None, encoded_labels=False, drift_report=False, raw_score=False, round=4, verbose=True, ml_usecase=MLUsecase.CLASSIFICATION, display=None, drift_kwargs=None)
INFO:logs:Checking exceptions
INFO:logs:Preloading libraries
INFO:logs:Preparing display monitor
Model
Accuracy
AUC
Recall
Prec.
F1
Kappa
MCC
0
Random Forest Classifier
0.9047
0.9627
0.8894
0.9087
0.8989
0.8087
0.8089
Out[25]:
H
Li
Be
B
C
N
O
F
Na
Mg
...
Fm_0
Md_0
No_0
Lr_0
0-norm_2
0-norm_3
0-norm_4
is_metal
Label
Score
0
0.0
0.0
0.0
0.0
0.0
0.0
0.000000
0.0
0.0
0.0
...
1.0
1.0
1.0
1.0
0.0
1.0
0.0
True
True
0.98
1
0.0
0.0
0.0
0.0
0.0
0.0
0.636364
0.0
0.0
0.0
...
1.0
1.0
1.0
1.0
0.0
1.0
0.0
True
True
0.86
2
0.0
0.0
0.0
0.0
0.0
0.0
0.000000
0.0
0.0
0.0
...
1.0
1.0
1.0
1.0
0.0
1.0
0.0
True
True
0.87
3
0.0
0.0
0.0
0.0
0.0
0.0
0.000000
0.0
0.0
0.0
...
1.0
1.0
1.0
1.0
0.0
0.0
1.0
False
False
1.00
4
0.0
0.0
0.0
0.0
0.0
0.0
0.250000
0.0
0.0
0.0
...
1.0
1.0
1.0
1.0
0.0
0.0
1.0
False
False
0.71
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
488
0.0
0.0
0.0
0.0
0.0
0.0
0.000000
0.0
0.0
0.0
...
1.0
1.0
1.0
1.0
0.0
1.0
0.0
True
True
0.99
489
0.0
0.0
0.0
0.0
0.0
0.0
0.000000
0.0
0.0
0.0
...
1.0
1.0
1.0
1.0
1.0
0.0
0.0
True
False
0.75
490
0.0
0.0
0.0
0.0
0.0
0.0
0.000000
0.0
0.0
0.0
...
1.0
1.0
1.0
1.0
0.0
0.0
1.0
False
False
0.98
491
0.0
0.0
0.0
0.0
0.0
0.0
0.250000
0.0
0.0
0.0
...
1.0
1.0
1.0
1.0
0.0
0.0
1.0
False
False
0.73
492
0.0
0.0
0.0
0.0
0.0
0.0
0.000000
0.0
0.0
0.0
...
1.0
1.0
1.0
1.0
0.0
1.0
0.0
True
True
0.56
493 rows × 112 columns
\n \n \n "}}, {"name": "stderr", "text": ["INFO:logs:Visual Rendered Successfully\n"], "output_type": "stream"}, {"name": "stderr", "text": ["INFO:logs:plot_model() succesfully completed......................................\n"], "output_type": "stream"}], "_model_module": "@jupyter-widgets/output", "_view_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "layout": "IPY_MODEL_11613422cd9745f4b53a92c5f7a02bce", "_view_count": null, "_view_module_version": "1.0.0"}, "model_name": "OutputModel", "model_module_version": "1.0.0"}, "bcaae2da1b164f339d079b05651f6f61": {"model_module": "@jupyter-widgets/controls", "state": {"style": "IPY_MODEL_e7a52d0c6b9043dfa6255293aca09584", "_view_name": "ProgressView", "max": 4, "orientation": "horizontal", "_model_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "min": 0, "description": "Processing: ", "_dom_classes": [], "value": 4, "description_tooltip": null, "_model_name": "IntProgressModel", "bar_style": "", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "layout": "IPY_MODEL_cd03b6f10b714aab9b8d04b1338f8dfa", "_view_count": null}, "model_name": "IntProgressModel", "model_module_version": "1.5.0"}, "7afe45025609434da6cae3d887a95f6f": {"model_module": "@jupyter-widgets/controls", "state": {"style": "IPY_MODEL_5c2585fd331f4bbba9e7295f37887a3e", "_view_name": "ToggleButtonsView", "icons": [""], "disabled": false, "_model_module": "@jupyter-widgets/controls", "_options_labels": ["Hyperparameters", "Residuals", "Prediction Error", "Cooks Distance", "Feature Selection", "Learning Curve", "Manifold Learning", "Validation Curve", "Feature Importance", "Feature Importance (All)", "Decision Tree", "Interactive Residuals"], "tooltips": [], "description": "Plot Type:", "button_style": "", "description_tooltip": null, "index": 0, "_model_module_version": "1.5.0", "_dom_classes": [], "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "layout": "IPY_MODEL_0a655a8148ba475ab25c1d306339b812", "_view_count": null, "_model_name": "ToggleButtonsModel"}, "model_name": "ToggleButtonsModel", "model_module_version": "1.5.0"}, "adca065ba54041c5986539558fc8d758": {"model_module": "@jupyter-widgets/base", "state": {"object_position": null, "top": null, "height": null, "object_fit": null, "overflow_x": null, "justify_content": null, "grid_row": null, "_view_module": "@jupyter-widgets/base", "grid_column": null, "right": null, "grid_gap": null, "align_self": null, "_model_module": "@jupyter-widgets/base", "visibility": null, "align_content": null, "border": null, "grid_area": null, "width": null, "flex_flow": null, "_view_count": null, "grid_template_columns": null, "margin": null, "order": null, "left": null, "grid_template_areas": null, "_view_name": "LayoutView", "bottom": null, "grid_auto_flow": null, "_model_name": "LayoutModel", "justify_items": null, "_view_module_version": "1.2.0", "flex": null, "grid_template_rows": null, "overflow": null, "padding": null, "align_items": null, "grid_auto_columns": null, "min_height": null, "display": null, "overflow_y": null, "max_height": null, "max_width": null, "_model_module_version": "1.2.0", "grid_auto_rows": null, "min_width": null}, "model_name": "LayoutModel", "model_module_version": "1.2.0"}, "a37501c8c7784514b1210a406e2e18da": {"model_module": "@jupyter-widgets/base", "state": {"object_position": null, "top": null, "height": null, "object_fit": null, "overflow_x": null, "justify_content": null, "grid_row": null, "_view_module": "@jupyter-widgets/base", "grid_column": null, "right": null, "grid_gap": null, "align_self": null, "_model_module": "@jupyter-widgets/base", "visibility": null, "align_content": null, "border": null, "grid_area": null, "width": null, "flex_flow": null, "_view_count": null, "grid_template_columns": null, "margin": null, "order": null, "left": null, "grid_template_areas": null, "_view_name": "LayoutView", "bottom": null, "grid_auto_flow": null, "_model_name": "LayoutModel", "justify_items": null, "_view_module_version": "1.2.0", "flex": null, "grid_template_rows": null, "overflow": null, "padding": null, "align_items": null, "grid_auto_columns": null, "min_height": null, "display": null, "overflow_y": null, "max_height": null, "max_width": null, "_model_module_version": "1.2.0", "grid_auto_rows": null, "min_width": null}, "model_name": "LayoutModel", "model_module_version": "1.2.0"}, "478b46bd049e4206acb9b030b06de808": {"model_module": "@jupyter-widgets/controls", "state": {"_view_name": "StyleView", "_model_name": "ProgressStyleModel", "description_width": "", "_model_module": "@jupyter-widgets/controls", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "bar_color": null}, "model_name": "ProgressStyleModel", "model_module_version": "1.5.0"}, "67b1f243788948c8b8623e5881cc257c": {"model_module": "@jupyter-widgets/base", "state": {"object_position": null, "top": null, "height": null, "object_fit": null, "overflow_x": null, "justify_content": null, "grid_row": null, "_view_module": "@jupyter-widgets/base", "grid_column": null, "right": null, "grid_gap": null, "align_self": null, "_model_module": "@jupyter-widgets/base", "visibility": null, "align_content": null, "border": null, "grid_area": null, "width": null, "flex_flow": null, "_view_count": null, "grid_template_columns": null, "margin": null, "order": null, "left": null, "grid_template_areas": null, "_view_name": "LayoutView", "bottom": null, "grid_auto_flow": null, "_model_name": "LayoutModel", "justify_items": null, "_view_module_version": "1.2.0", "flex": null, "grid_template_rows": null, "overflow": null, "padding": null, "align_items": null, "grid_auto_columns": null, "min_height": null, "display": null, "overflow_y": null, "max_height": null, "max_width": null, "_model_module_version": "1.2.0", "grid_auto_rows": null, "min_width": null}, "model_name": "LayoutModel", "model_module_version": "1.2.0"}, "0047d0763929438ba41590acc5162fab": {"model_module": "@jupyter-widgets/controls", "state": {"style": "IPY_MODEL_4b2b790bfc85460986c987ee29e7b3a0", "_view_name": "ProgressView", "max": 5, "orientation": "horizontal", "_model_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "min": 0, "description": "Processing: ", "_dom_classes": [], "value": 3, "description_tooltip": null, "_model_name": "IntProgressModel", "bar_style": "", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "layout": "IPY_MODEL_adca065ba54041c5986539558fc8d758", "_view_count": null}, "model_name": "IntProgressModel", "model_module_version": "1.5.0"}, "f65be7effe6c44db9f2fd05a8847ab44": {"model_module": "@jupyter-widgets/controls", "state": {"style": "IPY_MODEL_ade5c60376f5480fb1c66256c83c24df", "_view_name": "ProgressView", "max": 7, "orientation": "horizontal", "_model_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "min": 0, "description": "Processing: ", "_dom_classes": [], "value": 7, "description_tooltip": null, "_model_name": "IntProgressModel", "bar_style": "", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "layout": "IPY_MODEL_5abe36ec62704f9e9b9939bc7f8bcf41", "_view_count": null}, "model_name": "IntProgressModel", "model_module_version": "1.5.0"}, "cd03b6f10b714aab9b8d04b1338f8dfa": {"model_module": "@jupyter-widgets/base", "state": {"object_position": null, "top": null, "height": null, "object_fit": null, "overflow_x": null, "justify_content": null, "grid_row": null, "_view_module": "@jupyter-widgets/base", "grid_column": null, "right": null, "grid_gap": null, "align_self": null, "_model_module": "@jupyter-widgets/base", "visibility": null, "align_content": null, "border": null, "grid_area": null, "width": null, "flex_flow": null, "_view_count": null, "grid_template_columns": null, "margin": null, "order": null, "left": null, "grid_template_areas": null, "_view_name": "LayoutView", "bottom": null, "grid_auto_flow": null, "_model_name": "LayoutModel", "justify_items": null, "_view_module_version": "1.2.0", "flex": null, "grid_template_rows": null, "overflow": null, "padding": null, "align_items": null, "grid_auto_columns": null, "min_height": null, "display": null, "overflow_y": null, "max_height": null, "max_width": null, "_model_module_version": "1.2.0", "grid_auto_rows": null, "min_width": null}, "model_name": "LayoutModel", "model_module_version": "1.2.0"}, "9486b5ffd13943ff8961b4f510b49637": {"model_module": "@jupyter-widgets/controls", "state": {"style": "IPY_MODEL_29e2fcd0e3444fe89d5c7fc9230238d1", "_view_name": "ToggleButtonsView", "icons": [""], "disabled": false, "_model_module": "@jupyter-widgets/controls", "_options_labels": ["Hyperparameters", "AUC", "Confusion Matrix", "Threshold", "Precision Recall", "Prediction Error", "Class Report", "Feature Selection", "Learning Curve", "Manifold Learning", "Calibration Curve", "Validation Curve", "Dimensions", "Feature Importance", "Feature Importance (All)", "Decision Boundary", "Lift Chart", "Gain Chart", "Decision Tree", "KS Statistic Plot"], "tooltips": [], "description": "Plot Type:", "button_style": "", "description_tooltip": null, "index": 0, "_model_module_version": "1.5.0", "_dom_classes": [], "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "layout": "IPY_MODEL_e41e63712c8c4144b1ad2d2458bae6db", "_view_count": null, "_model_name": "ToggleButtonsModel"}, "model_name": "ToggleButtonsModel", "model_module_version": "1.5.0"}, "d38aeb2c118b4f159ce8d09ba22c855a": {"model_module": "@jupyter-widgets/base", "state": {"object_position": null, "top": null, "height": null, "object_fit": null, "overflow_x": null, "justify_content": null, "grid_row": null, "_view_module": "@jupyter-widgets/base", "grid_column": null, "right": null, "grid_gap": null, "align_self": null, "_model_module": "@jupyter-widgets/base", "visibility": null, "align_content": null, "border": null, "grid_area": null, "width": null, "flex_flow": null, "_view_count": null, "grid_template_columns": null, "margin": null, "order": null, "left": null, "grid_template_areas": null, "_view_name": "LayoutView", "bottom": null, "grid_auto_flow": null, "_model_name": "LayoutModel", "justify_items": null, "_view_module_version": "1.2.0", "flex": null, "grid_template_rows": null, "overflow": null, "padding": null, "align_items": null, "grid_auto_columns": null, "min_height": null, "display": null, "overflow_y": null, "max_height": null, "max_width": null, "_model_module_version": "1.2.0", "grid_auto_rows": null, "min_width": null}, "model_name": "LayoutModel", "model_module_version": "1.2.0"}, "22565fd7f6d4445dbfc005603d02062e": {"model_module": "@jupyter-widgets/controls", "state": {"style": "IPY_MODEL_607706ec63884ad382fbd93e26a2582e", "_view_name": "ProgressView", "max": 94, "orientation": "horizontal", "_model_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "min": 0, "description": "Processing: ", "_dom_classes": [], "value": 94, "description_tooltip": null, "_model_name": "IntProgressModel", "bar_style": "", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "layout": "IPY_MODEL_d38aeb2c118b4f159ce8d09ba22c855a", "_view_count": null}, "model_name": "IntProgressModel", "model_module_version": "1.5.0"}, "d3c34fa526724b3da221cc6c93338b76": {"model_module": "@jupyter-widgets/base", "state": {"object_position": null, "top": null, "height": null, "object_fit": null, "overflow_x": null, "justify_content": null, "grid_row": null, "_view_module": "@jupyter-widgets/base", "grid_column": null, "right": null, "grid_gap": null, "align_self": null, "_model_module": "@jupyter-widgets/base", "visibility": null, "align_content": null, "border": null, "grid_area": null, "width": null, "flex_flow": null, "_view_count": null, "grid_template_columns": null, "margin": null, "order": null, "left": null, "grid_template_areas": null, "_view_name": "LayoutView", "bottom": null, "grid_auto_flow": null, "_model_name": "LayoutModel", "justify_items": null, "_view_module_version": "1.2.0", "flex": null, "grid_template_rows": null, "overflow": null, "padding": null, "align_items": null, "grid_auto_columns": null, "min_height": null, "display": null, "overflow_y": null, "max_height": null, "max_width": null, "_model_module_version": "1.2.0", "grid_auto_rows": null, "min_width": null}, "model_name": "LayoutModel", "model_module_version": "1.2.0"}, "6742b24318f34c6f961e2c4b543cbfd2": {"model_module": "@jupyter-widgets/controls", "state": {"style": "IPY_MODEL_69563015f6e249179ea0b5b52aed2d90", "_view_name": "ProgressView", "max": 4, "orientation": "horizontal", "_model_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "min": 0, "description": "Processing: ", "_dom_classes": [], "value": 4, "description_tooltip": null, "_model_name": "IntProgressModel", "bar_style": "", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "layout": "IPY_MODEL_d9fde315ca4944db818c8ada35659195", "_view_count": null}, "model_name": "IntProgressModel", "model_module_version": "1.5.0"}, "2bcab833c2734b849aef4b9cf9576e5e": {"model_module": "@jupyter-widgets/controls", "state": {"_view_name": "StyleView", "_model_name": "ProgressStyleModel", "description_width": "", "_model_module": "@jupyter-widgets/controls", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "bar_color": null}, "model_name": "ProgressStyleModel", "model_module_version": "1.5.0"}, "aaa508890dd54a5c8e6f0eaa316aee35": {"model_module": "@jupyter-widgets/controls", "state": {"style": "IPY_MODEL_8f5d2dc80dc047228e0c15ab248bd089", "_view_name": "ProgressView", "max": 94, "orientation": "horizontal", "_model_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "min": 0, "description": "Processing: ", "_dom_classes": [], "value": 94, "description_tooltip": null, "_model_name": "IntProgressModel", "bar_style": "", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "layout": "IPY_MODEL_d3c34fa526724b3da221cc6c93338b76", "_view_count": null}, "model_name": "IntProgressModel", "model_module_version": "1.5.0"}, "5abe36ec62704f9e9b9939bc7f8bcf41": {"model_module": "@jupyter-widgets/base", "state": {"object_position": null, "top": null, "height": null, "object_fit": null, "overflow_x": null, "justify_content": null, "grid_row": null, "_view_module": "@jupyter-widgets/base", "grid_column": null, "right": null, "grid_gap": null, "align_self": null, "_model_module": "@jupyter-widgets/base", "visibility": null, "align_content": null, "border": null, "grid_area": null, "width": null, "flex_flow": null, "_view_count": null, "grid_template_columns": null, "margin": null, "order": null, "left": null, "grid_template_areas": null, "_view_name": "LayoutView", "bottom": null, "grid_auto_flow": null, "_model_name": "LayoutModel", "justify_items": null, "_view_module_version": "1.2.0", "flex": null, "grid_template_rows": null, "overflow": null, "padding": null, "align_items": null, "grid_auto_columns": null, "min_height": null, "display": null, "overflow_y": null, "max_height": null, "max_width": null, "_model_module_version": "1.2.0", "grid_auto_rows": null, "min_width": null}, "model_name": "LayoutModel", "model_module_version": "1.2.0"}, "22e49b2ceb0b4db5a42f2f05d369e5fa": {"model_module": "@jupyter-widgets/controls", "state": {"box_style": "", "_view_name": "VBoxView", "_view_count": null, "_model_name": "VBoxModel", "_dom_classes": ["widget-interact"], "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "layout": "IPY_MODEL_67b1f243788948c8b8623e5881cc257c", "children": ["IPY_MODEL_7afe45025609434da6cae3d887a95f6f", "IPY_MODEL_bf3332ad63c54a879b3c116a39112e7a"], "_model_module_version": "1.5.0", "_model_module": "@jupyter-widgets/controls"}, "model_name": "VBoxModel", "model_module_version": "1.5.0"}, "bf3332ad63c54a879b3c116a39112e7a": {"model_module": "@jupyter-widgets/output", "state": {"_dom_classes": [], "_view_name": "OutputView", "_model_name": "OutputModel", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": " Parameters\nalpha 1.0\ncopy_X True\nfit_intercept True\nmax_iter 1000\nnormalize False\npositive False\nprecompute False\nrandom_state 123\nselection cyclic\ntol 0.0001\nwarm_start False", "text/html": "\n
\n
\n
\n\n
\n \n \n \n Parameters \n \n \n \n \n alpha \n 1.0 \n \n \n copy_X \n True \n \n \n fit_intercept \n True \n \n \n max_iter \n 1000 \n \n \n normalize \n False \n \n \n positive \n False \n \n \n precompute \n False \n \n \n random_state \n 123 \n \n \n selection \n cyclic \n \n \n tol \n 0.0001 \n \n \n warm_start \n False \n \n \n
\n
\n
\n \n \n \n \n \n \n \n \n\n \n
\n
\n "}}, {"name": "stderr", "text": ["INFO:logs:Visual Rendered Successfully\n"], "output_type": "stream"}, {"name": "stderr", "text": ["INFO:logs:plot_model() succesfully completed......................................\n"], "output_type": "stream"}], "_model_module": "@jupyter-widgets/output", "_view_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "layout": "IPY_MODEL_ca9d56fe8597405e9556f7b24932d33e", "_view_count": null, "_view_module_version": "1.0.0"}, "model_name": "OutputModel", "model_module_version": "1.0.0"}, "d60805293cc24ccdb8960ac57cfb3caf": {"model_module": "@jupyter-widgets/controls", "state": {"_view_name": "StyleView", "_model_name": "ProgressStyleModel", "description_width": "", "_model_module": "@jupyter-widgets/controls", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "bar_color": null}, "model_name": "ProgressStyleModel", "model_module_version": "1.5.0"}, "14c299f210154b2f9b7048522e819aae": {"model_module": "@jupyter-widgets/controls", "state": {"_view_name": "StyleView", "_model_name": "ProgressStyleModel", "description_width": "", "_model_module": "@jupyter-widgets/controls", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "bar_color": null}, "model_name": "ProgressStyleModel", "model_module_version": "1.5.0"}}